
Gravitational Lensing – Basic Knowledge 

 

This document is to summarize basic knowledge related to the experiment, including the 

two cases you will simulate – lensing by a point mass and lensing by a singular isothermal 

sphere (i.e. a galaxy). 

   

Lensing by a point mass 

 

A point mass may be represented by a lens with logarithmic shape  
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  as shown in Fig (2).  Here, n is the refractive index and M is the mass 

of the lensing point mass, and 0 is the coordinate of the lens center. 

 

    

Figure (1):  S is the 

source,  is the transverse 

distance from the optic axis, 

O is the observer,  and  

are the angular separations 

of the source and the image 

from the optic axis as seen 

by the observer. ̂  is the 

deflection angle.   

 

Note: We will assume that S 

is a point source; more 

complex sources can be 

represented as a sum of 

multiple point sources. 

 

Figure (2):  

Logarithmic lens 

corresponding to 

a point mass. 

 



(a) The Einstein ring 

 

When the source S, center of the lens, and observer O are aligned along a straight line, the 

source S appears to the observer as a ring, known as the Einstein ring. 

 

The radius of the Einstein ring satisfies the equation 
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scR is as defined before, and
dD ,

sD ,
dsD  are as shown in Fig (1). 

 

 

 

 

Figure 3 depicts the functional dependence of the Einstein ring radius on various 

dimensional parameters.  For a fixed Ds (source-observer distance) the Einstein ring radius 

increases as the lens approaches the observer (Dds→Ds or equivalently Dd→0).  For a fixed 

Dd or Dds, the Einstein ring radius scales as the inversely to the source - observer distance Ds. 

 

(b) Strong Lensing, double images 

 

If the source is misaligned from the observer-lens axis by an angle , the lens equation of 

this point-mass lens  
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has two solutions  
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Thus two images corresponding to the source are seen (the symmetry of the Einstein ring 

is broken by the source’s misalignment). 

 

Figure (3): Functional dependences for the point mass lens.  (left): Einstein ring 

radius vs. Dds (Ds=1 fixed).  (right):  Einstein ring radius vs. Ds (Dds=0.3 fixed). 

 



The two images appear on either side of the source’s actual position, with one image 

inside where the Einstein ring would be and the other outside (Fig. 4). As the source moves 

away from the lens-observer axis (i.e., as  increases), one of the images approaches the lens 

and becomes very faint, while the other image approaches closer and closer to the true 

position of the source and trends toward the source’s actual brightness. 

 

   

(c) Flux (Brightness) Amplification 

 

For a circularly symmetric lens, the intensities of the images of the source S are amplified 

by a factor µ: 
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For a point-mass lens the solutions are 
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where 
1

Eu   . The net amplification of flux in the two images is obtained by adding the 

absolute magnifications: 
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Figure (4): Relative locations 

of the source S and images I+ 

and I- lensed by a point mass 

M. The dashed circle is the 

Einstein ring with radiusE.  

One image is inside the 

Einstein ring and the other 

outside. 

 

Figure (5): (left) Image locations + (blue) and - (red) as a function of source offset 

angle  for point mass lensing.  (right)  Flux amplification factors µ+ (blue) and µ- 

(red) versus source offset.  

 



 

Figure 5 shows the functional dependence of the image positions and amplifications 

versus the source offset angle .  For =0, the images the light is distributed around a circle 

of radius E (the Einstein ring); as  increases the symmetry is broken and the ring is replaced 

by two separate (and distorted) images.  For >0, the (+) image is outside the =0 Einstein 

ring, and the (-) image is inside.  For large , the amplification factor of the (+) image tends 

toward unity and towards its true position in the sky, whereas the (-) image trends toward the 

source position as its intensity fades to zero. 

 

Lensing by a singular isothermal sphere 

 

The singular isothermal sphere is a simple model for galaxies, which have a mass 

distribution inversely proportional to r
2
, corresponding to a conical lens shape 
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  , 

v  is the one-dimensional velocity dispersion of the stars, n is the 

refractive index and 0  is the coordinate of the lens center. 

 

(a) The Einstein ring 

 

When the source, center of the lens, and observer are aligned, as before the Einstein ring 

is observed.  Its radius satisfies the equation 
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  , and 

sD  and 
dsD  are as shown in Fig. (1). 

 

 Figure (6): Functional dependences of the Einstein ring radius for the isothermal lens, 

as in Figure (3).  Once again, as DS increases, the Einstein ring becomes smaller, and as the 

source-lens distance grows (at constant DS), so does the Einstein ring. 



(b) Multiple Images 

 

Multiple images are observed only if from the observer’s position the source lies inside 

the Einstein ring, i.e. if 
E  .  When this condition is satisfied, the lens equation has two 

solutions 
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and thus two images at the above positions are seen when 0. 

 

If, however, the source lies outside the Einstein ring, i.e. if 
E  , there is only one 

image seen, at 
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(d) Flux Amplification 

 

The intensity amplification ratios of the two images may be found as 
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where the µ- solution only exists if 
E  . 

 

 

 

 Figure (7): (left) Image locations + (blue) and - (red) as a function of source offset 

angle  for the isothermal lens.  (right)  Flux amplification factors µ+ (blue) and µ- 

(red) versus source offset.  Note that the (-) solution does not exist for /E>1, and that 

the (+) solution trends toward the actual source position and intensity for >>E.  

 


