
Additional Classical Hall Effect Measurements and Calculations for 

the Quantum Hall Effect Experiment 

 

Earlier you saw from equation (1) in the classical hall effect primer that: 
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knowing the thickness of your sample is nominally 1mm allows you to calculate the carrier 

densities of each device. It was mentioned that this can change in semiconductors. We'll 

define RH as the hall coefficient: 
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Where q is the charge of the electron, n is the carrier density of electrons, and p (about to 

be confused with a Greek letter soon, so keep track) is the carrier density of holes when only 

one type of charge carrier is present. We'll denote mobility (how fast a charge moves when 

an electric field acts on it) as either μe or μh when dealing with electrons or holes. When 

both carrier types are present, equation (2) becomes: 
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Which should reduce to (2) when the carrier density of one type of charge drops to zero. 

We'll assume for the purpose of the lab that (2) holds, but multiple bands of charge flow in a 

material can change the numerator of (2) from -.2 to 1.5 or so depending on the material and 

strength of the applied field (for more information, see Ashcroft and Mermin's Solid State 

Physics as an example). One last definition that we'll need for your measurements: 
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Where ρ(Greek letter, not lower case p) is the resistivity of the sample. If we know the Hall 

coefficient and the sample's resistivity, we can determine the sign, density, and mobility of 

the charge carriers (or vice-versa).  To get the resistivity, we need to use the Van der Pauw 

technique unless our sample is perfectly symmetrical and pure (otherwise the placement of 

your leads and other factors will give different results). In solid state physics you may see 

setups referred to as Hall bars. Our sample is a pretty decent rectangle, but you've hopefully 

noticed a nonzero offset voltage and that the idealistic theoretical model doesn't quite hold. 



The Van der Pauw tecnique: 

The Theory: 

Take any arbitrary shape, so long as it is thin, conducting throughout, and doesn't have any 

holes. With 4 contacts along the edges you can calculate the sheet resistance Rs for a sample 

of thickness t at zero applied magnetic field: 

 

 

 

 

 

 

You should get two different resistances for two different sets of contacts on the edges of the 

sample. Definitions for the measurement: 

࢔࢓ࢂ ൌ measured voltage from contact m to contact n 

࢈ࢇࡵ ൌ supplied current from contact a to contact b 

We'll make 2 resistance measurements: ષ૚ ൌ
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, then from the Van der Pauw 

technique we arrive at: 
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You can solve (5) for the sheet resistance Rs, then the resistivity ρis simply: 
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In EE, you may see this simplified to ࢙ࡾ ൌ ࢌ ࡼࡰࢂࡾ࣊
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, where RVDP = Ω1 = Ω2 and people working 

in the field memorizing pi/ln(2) ≈4.53 when they work with nicely engineered Hall bars. The f 

in front is a function of the ratio of resistances and ranges in value from 1 to 0. We'll work 

that out on our own soon. 

 

1 

2 

3 

4 

t { 



The Procedure: 

 

 

 

 

 

 

Wire up each sample to find the two resistances. To do this, take steps from 1mA to 10mA 

(probably best not to exceed 10mA, as you're using the smaller side contacts), then look at 

the slope of  
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ൌ ષ૚, for example. From here, you would plug in your two resistance 

values into equation (5) to obtain Rs or ρ. The punch line: you have to solve equation (5) 

numerically. In the rare case where Ω1 = Ω2 you can solve for ࢙ࡾ ൌ
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this in practice. Assuming R1 ≥ R2, you can first make a substitution ࢁ ൌ െࡾ࣊૛
࢙ࡾ

 and ࡽ ൌ
૚ࡾ
૛ࡾ
	so that (5) becomes ࢁࡽࢋ ൅ ࢁࢋ ൌ ૚, the another substitution ࢂ ൌ  :to arrive at ࢁࢋ
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Which you can solve in the software of your choosing. In the original Van der Pauw paper a 

relationship between some function f(Q) and Q was derived for R1 ≥ R2 such that: 
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Knowing the value of Q, a logarithmic plot was available to find the value of f(Q) which 

should range as a product from 0 to 1 times the ratio of pi/ln(2) mentioned before. 

Using your results from the Classical Hall Effect Primer and resistivity measurements here, 

calculate the mobility of each sample using equation (4) above.  
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Following along with Van der Pauw's original paper, we can go back and calculate the Hall 

coefficient for each sample and find the carrier density from equation (2). To do this, we take 

a Hall voltage measurement at zero field then apply some B field and measure the change in 

resistance.  
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The second half of (9) works assuming no offsets. We're going to try and directly measure 

the Hall voltage and get rid of the offsets. Set up some tables- 1.) for B = -, I = +, 2.) for B 

= -, I = -, 3.) for B = +, I = +, and 4.) for B = +, I = +. The magnitude of your current 

measurements should be roughly identical, and the magnitude of the B field should be 

identical (possibly difficult due to having to move the sample and keep the field steady). 

I contacts I measured V contacts V measured 

13 Do 1-10mA 24  

31 Do 1-10mA 24  

24 Do 1-10mA 13  

42 Do 1-10mA 13  

Swapping the field should help deal with the offset to the Hall voltage generated by geometry 

of the leads (it's independent of the direction of the field), and swapping the current leads 

should help deal with the offset due to thermal-electric voltage from temperature (sample 

heats up regardless of which way current is run through it, but will vary with time). Assuming 

the mobility of the sample is high enough, equation (1) should look more like the following: 
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Where α is some function that depends on the geometry of the sample and leads.  

Now arranging some terms you get: 
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Use (10) and (2) to arrive at a carrier density for each sample. Compare with your results 

from the Classical Hall effect primer. Compare your mobility measurements to the last step 

and report how much (and why) they differ. 
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Finally, you can follow along with the original Van der Pauw paper and do one last set of 

tables at zero magnetic field and a constant defined current: 

I contacts I measured V contacts V measured  R subscript  R calculated  

14  23  1  

41  32  2  

23  14  3  

32  41  4  

12  43  5  

21  34  6  

43  12  7  

34  21  8  

Next, take average resistance values and come up with the following terms: 
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To arrive at a set of resistance measurements for equation (5) again: 
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In order, using equations (5), (6), (4), and (2), arrive at a final measurement of carrier density 

for each sample. Compare with the other 2 methods and describe why they might differ. 

 

Final note: your TA threw this together quickly- so check your units, as there's different 

carrier densities for a sheet and in total involved. there may be a place where the t is 

inherently present or absent that I missed). 


