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Abstract

In this experiment you will learn about the powerful experimental
technique of optical pumping, and apply it to investigate the hyperfine
structure of Rubidium in an applied external magnetic field. The main
goal of the experiment is to measure the hyperfine splitting of the
ground state of Rubidium 87 at zero external magnetic field.

Note: In this lab manual, Gaussian units are used throughout. See
[4] for the relation between Gaussian and SI units.
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1 Hyperfine Structure of Rubidium

In this experiment you will study the optical pumping of Rubidium in an
external magnetic field to determine its hyperfine structure. In the following,
we give a brief outline of the hyperfine structure of Rubidium and its Zeeman
splitting in an external magnetic field. The main goal of this section is to
motivate the Breit-Rabi formula, which gives the Zeeman splitting of the
Hyperfine levels. For a thorough and enlightening discussion of these topics
we refer to the excellent article by Benumof [1].

The ground state of alkali atoms - of which Rubidium is one - consists of
a number of closed shells and one s-state valence electron in the next shell.
Recall that the total angular momentum of a closed atomic shell is zero,
so the total angular momentum of the Rubidium atom is the sum of three
angular momenta: the orbital and spin angular momenta L and S of the
valence electron, and the nuclear angular momentum I. Since Rubidium has
a fairly large number of electrons and the closed shells are spherically sym-
metric, we can treat the valence electron in mean field theory: the closed
shells just give an effective screening contribution to the spherically sym-
metric Coulomb potential of the nucleus and can otherwise be neglected.
Thus the only players in our discussion will be the nucleus and the valence
electron.

To determine the hyperfine structure of this effective one-electron problem
we have to solve the Shrödinger equation

(H0 + Hhf )ψ = Eψ

where H0 is the effective Hamiltonian describing the kinetic energy and
Coulomb interaction of the electron, and Hhf is the hyperfine Hamiltonian

Hhf = ηI · J− µJ · B− µI · B

Here J = L+S is the total electron angular momentum, η is a proportionality
constant and µJ , µI are the electron and nuclear magnetic moments respec-
tively. Note that since were are only investigating the hyperfine structure of
the s-wave ground state, we can neglect spin-orbit coupling. The magnetic
moments are written in the form

µJ = −gJ
e

2mc
J and µI = gI

e

2mc
I
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where m is the mass of the electron, −e is the charge of the electron, c is
the speed of light, and gJ , gI are the electron and nuclear gyromagnetic
ratios. Note that in terms of orders of magnitude gI ∼ m

M gJ ∼ 1
1836gJ ,

where M is the mass of a nucleon. One of the goals of this experiment
will be to measure gI . It will also be convenient to introduce the total
angular momentum F = J + I of the entire atom. In the ground state,
the allowed values of F are just F = I ± S = I ± 1/2. The solution of
the full quantum mechanical problem is not difficult - it is essentially a
first-order time-independent perturbation theory problem - but somewhat
lengthy. A careful derivation is given in [1]; for further reading, see also
[2]. At non-zero external magnetic field, the degeneracy of the hyperfine
structure is completely broken (this is the Zeeman effect) and each allowed
value of mF = −F,−F + 1, ..., F − 1, F corresponds to a different energy
eigenvalue; here mF is the component of F parallel to B. Relative to a
convenient reference level, the hyperfine energies are given by the celebrated
Breit-Rabi formula, which is usually written in terms of angular frequencies
rather than energies:

ωF=I±1/2
mF

= −µBgImF B ±
∆hf

2

(
1 +

4mF x

2I + 1
+ x2

)1/2

In this formula µB = e!/2mc = 1.40MHz/Gauss is the Bohr magneton,
B = |B|, ∆hf is the magnitude of the hyperfine splitting of the F = I − 1/2
and F = I + 1/2 levels at zero external magnetic field (this is another thing
we want to measure in this experiment), and

x =
(gJ + gI)µBB

∆hf

This formula depends on the sign conventions we chose for the gyromagnetic
ratios; in our conventions, both gJ and gI are positive. As an aside, it is
interesting to point out that ∆hf = η!2(I+ 1

2) depends only on the coefficient
of I·J in the hyperfine Hamiltonian, as is expected for the hyperfine splitting
at zero external field. In this experiment we will be dealing exclusively with
Rubidium 87, which has I = 3/2 and consequently has F = 1 or F = 2. The
hyperfine splitting between these two levels at zero external field is given by
∆hf = 6834.7MHz. The nuclear gyromagnetic ratio of Rubidium 87 is gI =
0.000999. Although the purpose of this experiment is to measure ∆hf and
gI , it will be useful to plug the literature values into the Breit-Rabi formula,
so that you can calculate the expected hyperfine transition frequencies. For
Rubidium 87, the frequency in MHz of a hyperfine transition between a state
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with mF and a state with mF − 1 for F = I ± 1/2 is given by

ν = 3417.34
((

1 + mF x + x2
)1/2 −

(
1 + (mF − 1)x + x2

)1/2
)
∓ 0.0013978B

where

x = 9.2302 · 104 B

and in both of these formulas B is measured in Gauss. For the given exper-
imental setup, it is also true that B $ 19.53Iel, where again B is measured
in Gauss and Iel is current generating the magnetic field measured in A.
Note that for Rubidium 87 there should be a total of 6 transitions given
by the formula above: for F = 1 the possible transitions are 1 ↔ 0 and
0 ↔ −1, and for F = 2 the possible transitions are 2 ↔ 1, 1 ↔ 0, 0 ↔ −1
and −1 ↔ −2. The information given above is sufficient to calculate the
expected hyperfine transition frequencies and to analyze the data you will
obtain in order to determine ∆hf and gI ; this will be discussed further be-
low. For further reading we again refer to [1] and [2]. Figure 1 shows the
hyperfine structure of Rubidium 87 as a function of the external magnetic
field.

2 Principles of Optical Pumping

In this experiment, light form a Rubidium lamp is used to optically pump
Rubidium 87 vapor. In the following, we briefly outline the mechanism of
optical pumping, and explain how it can be used to measure hyperfine tran-
sition frequencies. As discussed further below, the most important part of
the experimental setup consists of a linear arrangement of the Rubidium
lamp, an optical filter and polarizer, the Rubidium vapor bulb and an op-
tical detector. The light from the Rubidium lamp is filtered to only allow
photons of wavelength 7947.6 Å to pass through the Rubidium vapor bulb.
These photons are exactly of the right energy to cause a transition of the
valence electron from its 2S1/2 ground state to the 2P1/2 first excited state
(see Figure 1). These filtered photons are then passed through a polarizer
(a quarter wave plate) to convert them into photons of right circular polar-
ization (or positive helicity); we refer to such photons as σ+ photons. If the
external magnetic field is parallel to their direction of propagation, these
σ+ photons can affect 2S1/2 →2 P1/2 transitions according to the following
dipole selection rules (these give the dominant transition processes):
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Figure 1: Hyperfine Structure of the Low-Lying States of Rb87 (Source: [1])

∆L = ±1 ∆J = 0,±1 ∆F = 0,±1 ∆mF = +1

Note that σ+ photons can only cause ∆mF = +1 transitions. Likewise, pho-
tons of negative helicity - so-called σ− photons - can only cause ∆mF = −1
transitions, with otherwise identical selection rules. So when a σ+ photon
hits a Rubidium 87 atom, it not only excites the electron to the 2P1/2 level,
but also raises its mF by one unit. Of course, the excited state is unsta-
ble and spontaneously decays back to the ground state by emitting another
photon. However, the spontaneously emitted photon has arbitrary polar-
ization and the decay can have ∆mF = 0,±1. Thus, on average we have
∆mF = +1 for the excitation by σ+ photons, but ∆mF = 0 for the sponta-
neous decay, giving a net average ∆mF = +1: on average, the electrons will
migrate into states of higher and higher mF . This phenomenon is referred
to as optical pumping. Of course mF = −F,−F + 1, ..., F − 1, F , so this
process eventually has to stop. At this point the vast majority of electrons
in the Rubidium 87 vapor are in the ground state of highest allowed mF

(due to the close spacing of the hyperfine levels, thermal effects prevent a
complete depletion of the lower-lying mF states). This process is illustrated
in Figure 2. It is important to note that when the external magnetic field
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Figure 2: The Optical Pumping Mechanism at Work (Source: Eric D. Black,
Optical Pumping, http://www.pma.caltech.edu/∼ph77/labs/)

is antiparallel to the photon direction of propagation the selection rules for
σ+ photons and σ− photons switch: σ+ photons act like σ− photons (the
pump electrons to the state of lowest mF ) and vice versa.

Physically, the fact that the electrons are being pumped into a state of
maximal mF means that their magnetic dipole moments orient themselves
parallel to the external magnetic field. In a state of maximal mF , dipole
selection rules prohibit the atoms from absorbing any more σ+ photons,
and thus these photons pass through the Rubidium vapor bulb unaffected:
in its fully pumped state the bulb is transparent. Now imagine that there
was - loosely speaking - a way to disorient the magnetic moments we just
talked about. Then the Rubidium gas would not be in its fully pumped
state anymore and could again absorb σ+ photons: it would temporarily
become opaque. By monitoring the depletion of the incident beam of σ+

photons using the optical detector behind the Rubidium vapor bulb, we can
thus tell when the Rubidium vapor is in its fully pumped state and when
it has become temporarily disoriented: temporary opacity shows up as a
dip in the intensity of the incident photon beam measured by the optical
detector. This is the key idea which makes optical pumping a powerful
experimental technique: we can use it to tell when the Rubidium vapor
becomes temporarily disoriented.
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In this experiment you will use two methods of disorienting the Rubidium
atoms. The simpler method consists of applying a slowly varying longitudi-
nal magnetic field (along the direction of the photon beam) which is driven
by a triangle waveform. At nonzero values of the field, the Rubidium atoms
will be optically pumped into a state of magnetic alignment. However, as
the triangle passes through zero and the magnetic field switches direction,
the atoms become temporarily disoriented as they start to get pumped in
the opposite direction. This is visible as a single dip in the optical detector
signal exactly at the moment when the magnetic field passes through zero,
and is known as zero-crossing. The dip is followed by an exponential recov-
ery corresponding to the gradual re-pumping of the Rubidium atoms in the
opposite direction. Note that the dip is often followed by an overshoot in the
signal. The second method of disorienting the Rubidium atoms is slightly
more complicated. First we apply a DC (i.e. time-independent) longitudinal
magnetic field to Zeeman-split the hyperfine levels of the Rubidium atoms.
Optical pumping happens as before; most electrons end up in the state of
highest mF . We now apply a second magnetic field transverse to the first
longitudinal field. This transverse field is sinusoidally driven at radio fre-
quencies (on the order of tens of MHz), and is called an RF field. If the
frequency of the RF field is very close or equal to the splitting between two
adjacent hyperfine levels, it can cause a hyperfine transition between these
levels (this is a resonance effect very similar to the one in nuclear magnetic
resonance ). This disorients the Rubidium atoms, which again makes the
Rubidium vapor temporarily opaque and causes a dip in the detector signal.
Using this method, one can determine the hyperfine splitting of Rubidium
87 by looking for those RF frequencies at which a dip is visible in the detec-
tor output. This is the method used in this experiment (for purely technical
reasons, a third magnetic field is used to sweep in and out of resonance; this
is discussed below).

3 Equipment and Experimental Setup

The amount of equipment involved in this experiment is substantial, and
it is worth your time to spend a while becoming familiar with the various
components and how they are connected to each other, before beginning the
experiment. The entire setup is succinctly summarized in Figure 3.

The main part of the experimental setup is the straight-line configuration
of Rubidium bulb, polarizer and filter, Rubidium vapor bulb and optical
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detector located inside the two large longitudinal solenoids. The lamp is
powered independently, and the current supplied by the lamp voltage source
should not exceed 25 mA; in our experience higher currents lead to better
signals. The lamp should be warmed up on standby before turning it on.
The Rubidium bulb is heated with a gas burner, as the Rubidium needs
to be in its vaporized state filling the bulb to undergo optical pumping; if,
however, the Rubidium becomes too hot, constant collisions with the bulb
rapidly disorient the Rubidium atoms and greatly reduce the signal quality.
A suggested operating temperature, which can be monitored with the ther-
mometer attached to the bulb, is around 60◦ C, although in our experience
higher temperatures around ∼ 75◦ C have yielded the best results. It is also
advisable to heat the sample to the desired temperature and then keep a
small flame burning throughout the experiment to maintain the bulb at con-
stant operating temperature, since the signal quality is strongly affected by
temperature fluctuations. Finally, it is important that the optical detector
is carefully aligned along the lamp-bulb axis.

The parts of the experiment described above are enclosed in two concen-
tric, longitudinal solenoids which are shielded from the Earth’s magnetic
field by magnetically soft µ-metal on the outside of the solenoids. The DC
coil is 74 cm long, 23 cm in diameter, and has 1164 turns. It is powered by
a high-voltage power source which generates a stable, high DC current (up
to ∼ 3A). For this experiment, the relation between the DC current and the
magnetic field at the center of the solenoid is given by B $ 19.53Iel, where
B is in Gauss and Iel in A. The current powering the DC coil is determined
by measuring the voltage drop across a (1 ± 0.01) · 10−2Ω precision resistor
using a digital multimeter. During the measurement of the hyperfine tran-
sition frequencies, it is important to keep the DC current very stable, as
those frequencies are sensitive to the DC magnetic field. The second coil -
referred to as the waveform coil - has the same dimensions as the DC coil,
but has 1940 turns. It is connected to a waveform generator whose output is
amplified before connecting to the coil. The waveform generator can gener-
ate several waveforms, but the most useful for this experiment is a triangle
wave of low frequency (∼ 0.5 Hz). The waveform coil provides the triangle
magnetic field for the zero-crossing part of the experiment, and also plays an
important part in the measurement of the hyperfine transition frequencies
(see below). The output from the waveform generator is monitored on the
waveform oscilloscope. This output is also used to control the X-channel
of the signal oscilloscope, so that the oscilloscope trace moves horizontally
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back and forth across the screen together with the triangle, and crosses the
center of the screen exactly when the triangle field passes through zero. It is
advisable to set the amplitude of the waveform generator to a high value and
correspondingly adjust the oscilloscope screen so that the trace is exactly
confined to the screen and does not overshoot on either side. Finally, the
transverse RF field is directly controlled by a separate RF generator, which
can generate sinusoidal RF waves over a wide range of frequencies with high
precision. To improve the signal quality it helps to set the amplitude of
the RF generator to a value close to the allowed maximum. Note that dur-
ing the experiment, the µ-metal shielding mentioned above acquires a small
amount of magnetization which biases the apparatus. For this reason the
entire experiment needs to be performed with the DC longitudinal field both
parallel and anti-parallel to the light beam from the Rubidium lamp. This
reversal can be easily effected by the DC reversing switch next to the DC
and waveform input sockets.

The signal from the optical detector is passed through an operational
amplifier and then through a low-pass filter before connecting to the Y-
channel of the signal oscilloscope. Thus the signal oscilloscope output is
synchronized in a way that the zero-crossing dip, which occurs when the
triangle magnetic field passes through zero, occurs at the center of the os-
cilloscope screen. There is a significant amount of optical noise (disruptive
light sources) and electromagnetic noise (inductive couplings between dif-
ferent pieces of equipment) which can reduce the quality of the signal. The
optical noise is reduced by covering the entire apparatus with a piece of thick
black cloth, closing the blinds on the windows, and turning off the light (yes,
this experiment is performed in the dark). Turning off the lights is espe-
cially important, since they flicker with the standard AC frequency of 60 Hz
and introduce a significant amount of optical noise. Since the signals which
we would like to measure in this experiment - the dips which occur when
the Rubidium atoms become temporarily disoriented - are of a relatively
low frequency (on the order of a couple of Hz), the filter has a relatively
steep rolloff at ∼ 30 Hz. In particular, this rolloff is chosen to eliminate the
standard AC frequency of 60 Hz, which might enter the experiment through
various sources. While the filter is a useful tool for this experiment, you
should try to perform the experiment both with and without the filter, and
compare results. Keep in mind that very low-pass filters such as this one
can have a considerable effect on the shape of the signal. The definitive
reference for filter electronics is [3].
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Figure 4: Characteristic Shape of the Zero-Crossing Dip (Source: [1])

4 The Experiment

The first part of this experiment consists of setting up the apparatus and
observing the zero-crossing. For this part of the experiment there is no
DC and no RF magnetic field; only the triangle field from the waveform
generator is present. You should observe a single dip on the oscilloscope
whenever the trace passes through the center of the screen. If everything is
aligned properly and the system is allowed some time to reach equilibrium,
you should observe a zero-crossing signal of amplitude ∼ 20 mV without
the filter present. If you are using the filter, the signal will be somewhat
reduced. The characteristic shape of the zero-crossing (and also the dips
during the second part of the experiment) is shown in Figure 4 for the
case when the oscilloscope trace is sweeping from left to right. The rapid
drop CD occurs when the triangle field passes through zero and the atoms
become disoriented. If the field were entirely uniform throughout the bulb,
this drop would be instantaneous, and thus the width H is a measure of the
non-uniformity of the field in the bulb. The exponentially rising curve DE
corresponds to the re-pumping of the Rubidium atoms in the other direction;
the time constant of this exponential is a good measure of the re-pumping
time. In order to correctly perform the second part of the experiment, you
need to once and for all pick a direction for the oscilloscope trace which you
are going to use for your measurements. For example, you could decide to
only read the trace as it goes from left to right (alternatively you could set
the waveform generator to only ramp from left to right instead of generating
a triangle, but in our experience it is easier to just stick with the triangle).
The reason you have to make this choice is that the magnetic bias caused by
the µ-metal shielding causes an asymmetry between left-to-right and right-
to-left sweeps. If you look at your zero-crossing signal, you should notice
that the sharp drop CD does not occur at exactly the same place for the
two directions. Once you have picked a direction, you should shift your
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Figure 5: Characteristic Oscilloscope Trace in the Measurement of the Hy-
perfine Transition Frequencies (Source: [1])

oscilloscope display, so that the nearly vertical line CD exactly matches up
with the Y-axis of your oscilloscope; then you can be confident that the
center of the screen corresponds to zero total magnetic field (i.e. the field
from the waveform generator and the residual µ-metal field exactly cancel
at this point). Now you can move on and perform the second part of the
experiment. As mentioned above you will have to perform the second part
with both possible orientations for the DC magnetic field. After you switch
the direction of the DC field you should realign your zero-crossing just as
described above. Note that you should not change the direction in which
you are reading your signal, but only the DC magnetic field.

The second part of the experiment - measuring the hyperfine transition
frequencies of Rubidium 87 - involves the full apparatus. You now also
have to turn on the DC and RF magnetic fields in addition to the triangle
field. For a given value of the total longitudinal field, a specific hyperfine
transition has a given frequency. The 6 hyperfine transitions for Rubidium
87 lie sufficiently close together that by slightly altering the longitudinal
field, each individual transition can be tuned to a common frequency (of
course this cannot be done for all transitions simultaneously). In order
to make all 6 transitions visible at once, you tune the RF frequency to
correspond to one of the transition frequencies for the given value of the
DC magnetic field calculated from the formulas discussed in Section 1. The
longitudinal triangle field superimposed on the DC field then slightly shifts
the total longitudinal field back and forth so that the the individual hyperfine
transitions alter their frequencies in a way that one hyperfine transition is
always in resonance with the RF field. Thus the 6 hyperfine transitions
are shifted in an out of resonance, and what appears on the oscilloscope
is a sequence of 6 dips as the triangle sweeps back and forth. This trace
is schematically shown in Figure 5. You can test your understanding of
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what has been discussed so far by trying to figure out whether the trace in
Figure 5 is moving from left to right or vice versa, and in which direction
the DC magnetic field is pointing. Now that all 6 transition dips have been
made visible, you can precisely measure the frequency of each by tuning the
RF frequency so that the dip you want to measure has its sharp dropoff
at exactly the center of the oscilloscope screen. From the first part of the
experiment, we know that this corresponds to zero triangle and residual
magnetic field; at this point, only the DC field is acting. Thus for a given
value of the DC field, this allows you to accurately measure the frequencies
of all 6 hyperfine transitions. It is important to note that for this part of
the experiment, the initial drop in each dip will be considerably less sharp
than in the zero crossing case (this is true whether or not you use the filter).
Therefore, an important systematic is your choice on which part of the drop
to center the oscilloscope screen; a reasonable choice is the middle of drop
(halfway between C and D in Figure 4). You should measure all transitions
for several values of the DC magnetic field. A good range of DC currents
to use is ∼ 1.0 A to ∼ 3.0 A in steps of ∼ 0.25 A. At lower magnetic fields,
the 6 dips meld into one another and become impossible to discern. Finally,
as discussed above, you should repeat all measurements after reversing the
direction of the DC field.

5 Notes on Data Analysis and Further Investiga-
tions

The data analysis for this experiment is comparatively straightforward.
In principle, the measured hyperfine transition frequencies and the Breit-
Rabi formula immediately allow you to calculate ∆hf and gI . In practice,
two extra steps are necessary. Firstly, the transition frequencies for the two
orientations of the DC field will in general differ and should be averaged.
Secondly, unavoidable systematic errors should be eliminated by working
with the hyperfine transition frequencies relative to one specific transition
frequency (e.g. the lowest one). This should allow you to calculate ∆hf

quite accurately (∼ 3%). The error in gI tends to be larger, as it is the
small difference between two large quantities.

While you should expect to see only 6 dips corresponding to the 6 hy-
perfine transitions in the second part of the experiment, a seventh, spurious
dip has consistently appeared in our experience. This dip becomes very pro-
nounced at high DC magnetic fields, at which it is virtually indistinguishable
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from the other dips, and melds with the neighboring dips as the DC field
is reduced. While it is likely that this spurious dip is caused by the instru-
mentation, its origin remains unclear. If you measure an additional dip,
you should compare your data with the predictions from the Brei-Rabi for-
mula to determine which dip is spurious and neglect it in your data analysis.
However, if you have completed the measurement of the hyperfine transition
frequencies, you might want to spend some time to further investigate this
spurious dip, and how it behaves as various experimental parameters are
changed; this might yield some insight into its origin.

Finally, the optical pumping experiment is in a continual state of develop-
ment and improvement. In particular, efforts to improve the signal filter and
the RF coil surrounding the Rubidium bulb are currently planned, which
should considerably improve the signal quality. A new digital signal scope
has already been ordered but is not yet fully integrated into the experiment.
Also, the Rubidium bulb currently used essentially only contains Rubidium
87; a future replacement bulb is likely to contain both Rubidium 87 and
Rubidium 85, both of whose hyperfine structures can be accurately mesured
using the techniques described above. The calculations in Section 1 triv-
ially generalize to the case of Rubidium 85. You should consult your lab
instructor regarding the status of these improvements.
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