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1. Introduction

In this brief summary of the Integer Quantum Hall Effect (IQHE), I describe a system that,
under the right conditions, exhibits astonishingly precise quantization of the quantity h/e2, both
fundamental constants of nature1. Our system is a two-dimensional sheet of electrons, which we
manufacture at the junction between two semiconducting materials when cooled to the boiling point
of liquid Helium (about 4 Kelvin). As we shall see, the electrons in the sheet can only possess energy
of discrete values, called Landau energy levels, and because of the exclusion principle, only a certain
number of electrons per sample can belong to each level. By applying a magnetic field, we change
the number of electrons that fit; as electrons are reshuffled, we may observe the quantization by
measuring the electrical properties of the sheet.

2. Classical Hall Effect

Consider a classical (high-temperature) conducting material placed in a magnetic field B along
the ẑ-direction and subject to the voltage V from a battery along the x-direction, as shown in Fig. 1.
In 1879, Edwin Hall discovered that under such conditions, a transverse voltage is generated along
y. To derive its magnitude, consider that the electrons are subject to an electromotive force plus a
Lorentz force (boldface indicating vectors), Ftot = −eE−ev×B. The resulting curved trajectories
deposit a net buildup of electrons on one side of the sample, which in turn generates an opposing
electric field Ey that cancels the Lorentz force. The equilibrium condition is Fmag + FHall = 0, or

EHall = vxBz. (2.1)

With the traditional current density2 jx = n(−e)vx, we have

EHall =
jx
−ne

Bz (2.2)

1h is Planck’s constant, e is the magnitude of the charge of an electron
2n is the number density of charge carriers; see any standard text for reference

1
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Figure 1. The classical Hall effect in a metal

yielding the Hall “resistance”, defined as

RHall =
VHall
Ix

=
EHall
jx

=
−B
ne

, (2.3)

which, surprisingly, is independent of any physical parameter except the density of charge carriers.
Note that RHall is not a true electrical resistance, because it involves the (transverse) Hall voltage.

In the quantum system of the IQHE, we will need a more robust formalism. I quote the result
now, which is a charge carrier density n = ieB/h with i a positive integer. Plugging this into Eq.
(2.3) already yields a quantized Hall resistance,

RHall =
h

ie2
, i = 1, 2, . . . (2.4)

This tells us that the Hall resistance is one of these values; which one it is depends on the quantum
statistics of the system, as discussed in the next section.

3. Landau Levels and the Density of States

Any independent quantum mechanical system can be fully described by solving the Schroedinger
equation using a Hamiltonian that describes all the appropriate physical conditions. If you are
unfamiliar with all the mathematical details involved, you may wish to skip ahead to the answer,
Eq. (3.11).

3.1. The Hamiltonian. The Hamiltonian for an electron that is completely free in two dimensions,
x and y, is given by

H =
1

2m
(p− eA)2 + eφ (3.1)

where p = px + py, and −e and m are the charge and mass of an electron. Recall that you can
choose any scalar potential φ and vector potential A so long as the electric and magnetic fields are
generated correctly (recall: B = curlA and E = −grad φ). In our case it is convenient to choose
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the Landau gauge, φ = 0 and A = Bxŷ, yielding B = ∇×A = Bẑ. Now we have

H =
1

2m
(p− eA)2 =

1
2m

[(p · p)− (ep ·A)− (eA · p) + (e2A ·A)] (3.2)

=
1

2m
(
p · p− 2e(Bxŷ · p) + e2A ·A

)
=

1
2m

(
p2
x + p2

y − 2eBxpy + e2B2x2
)
, (3.3)

where I am justified in contracting the cross-terms because the commutator of A and p is zero,
which you can verify. Don’t be confused about which direction is x and which is y. As long as we’re
talking only about the quantum mechanics, and not about the Hall effect, there’s nothing special
about either one — the electron sheet is symmetric around the z-axis. However, we will solve the
Schroedinger equation differently for x and y, simply because that’s what works out conveniently
for our choice of vector potential.

3.2. Solving the Schroedinger Equation. By separating variables, I can write

ˆHx,yψ(x, y) = Eψ(x, y)

as
Ĥxψ(x)Ĥyψ(y) = Eψ(x)ψ(y), (3.4)

and then solve for the eigenstates of x and y separately. In our Hamiltonian (3.3), the coordinate y
does not appear explicitly, and thus we know the momentum py is conserved. If the momentum does
not change, then we essentially have a free particle in the y direction, and we know its eigenstates
are plane wave solutions,

ψ(y) = ψ0e
ipyy

~ , (3.5)

with eigenvalues E = p2
y/2m. As is common practice, we can assume the wavefunctions taper

smoothly toward the edges of the sample; mathematically, this is realized by imposing periodic
boundary conditions in y, so that

e
ipyy

~ = e
2νiπy
Ly , ν = 1, 2, . . . (3.6)

yielding the allowed values of py:
py
~

=
2νπ
Ly

(3.7)

which will become important later. After plugging (3.5) into (3.4), we obtain a Schroedinger
equation entirely in x:

−~2

2m
∂2X

∂x2
+

1
2m

(
p2
y − 2eBpyx+ e2B2x2

)
X = EX. (3.8)

which looks more familiar written this way:

−~2

2m
∂2X

∂x2
+

1
2
mω2

c (x− x0)2X = EX (3.9)

which is just the equation for a one dimensional harmonic oscillator centered on x0. Here

x0 =
py
eB

(3.10)
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and ωc = eB
m is the cyclotron frequency, after its role in the behavior of a classical particle in a

magnetic field. The harmonic oscillator solutions, which can be found in any standard text, are a
discrete spectrum of energy levels

Ei,x = ~ωc(i+
1
2

), i = 0, 1, 2, . . . (3.11)

which, in cases involving a quantum fluid of electrons, are called “Landau” energy levels. (L. D.
Landau was the first to solve this problem.) The corresponding wavefunctions are the usual ones
involving the Hermite polynomials Hi:

ψn,ν(x, y) = ψn(x)ψν(y) = e
2νiπy
Ly

√
1

2nn!

(mω
π~

) 1
4
e
−

“
1
2
mωx2

2~

”
Hi

(√
mωx2

~

)
which you can promptly forget.

3.3. Capacity of Levels. In this Landau gauge, the solutions for the allowed electron states can be
thought of as being extended over the entire sample in the y direction, and as a localized harmonic
oscillator eigenstate in x, centered on the point x0 = py/eB (Eq. 3.10). Treating the electron layer
as a single system, we can now ask how many electrons are allowed in each Landau level, since by
the Pauli exclusion principle there cannot be more than one electron in the same state and the same
position in space. Mathematically, this condition can be imposed by demanding that the center of
the electron wavefunction lies inside the sample. Recalling (3.10) and (3.7):

x0 =
py
eB

=
2ν~π
eBLy

. (3.12)

The condition that must be satisfied is

0 ≤ x0 ≤ Lx,
which, when x0 = Lx, places an upper bound on ν,

x0 =
2νmax~π
eBLy

= Lx

or

νmax =
LxLyeB

2π~
=
LxLy
2πl2

, (3.13)

where l =
√

~
eB is the magnetic length, a convenient length scale for this problem. The index ν

determines how many y eigenstates (the extended direction) we can fit into each allowed x energy
level. Since each y eigenstate only allows one electron (two if we consider spin), this is equivalent
to saying how many electrons can be fit into said energy level. We can now ask how many electrons
will fit in each level by considering the case when an integer number of levels are filled. Here the
total number of electrons in the sample N = nLxLy is equal to the number of filled levels ifilled
times number of electrons allowed per level, νmax. Thus

n =
ifilledνmax
LxLy

= ifilled
eB

h
, i = integer Landau index (3.14)

(not ~!), where νmax is the highest allowed eigenvalue of momentum along y. Thus in a sample of
finite size, we can fit exactly eB/h electrons per Landau level. (Technically, there are 2eB/h per
level, taking into account that electrons have two spin states.) Like the Hall resistance, and just as
surprising, this does not depend on any physical parameters of the system!
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3.4. Density of States. We now have a spectrum of energy (Landau) states spaced ~ωc apart, each
of which can hold eB/h electrons. Since electrons like to fall into the lowest-energy configuration,
our sheet of N electrons will fill up the lowest energy state with eB/h electrons, then the next-
lowest energy with another eB/h, and so forth until all the electrons are used up. Fig. 2 shows a
scenario where there are exactly enough electrons to completely fill two Landau levels. The energy
of the highest electron is the Fermi energy, εF . The top of the distribution will be slightly thermally
broadened (not shown), but at low temperatures we can safely assume the spacing between Landau
levels is much greater than the mean thermal energy of any electron, i.e. ~ωc � kBT where kB is
Boltzmann’s constant. This is why we are required to cool our system to liquid Helium temperature,
about 4 Kelvin, before we begin the experiment.

E

D(E)

F
E

eB/h electrons

per level

Figure 2. Density of states for an ideal two-dimensional system

Suppose now we change the capacity of each Landau level, say, by changing the magnetic field
B. As more electrons fit into lower energy levels, the location of the Fermi energy will stay put
at the second energy level. At the moment the last electron falls out of this state into the lower
band, the Fermi level will suddenly drop to the lower band. Thus, as the magnetic field is altered,
the system periodically undergoes abrupt changes in how the electrons are distributed among their
allowed modes.

4. Observing the Hall Effect: Conductivity and the Role of Impurities

In the experiment, we measure the Hall resistance (the voltage along y with respect to a current
along x). For most values of B, it appears to vary in a predictable way with the magnetic field, as in
the classical case, Eq. (2.3). The peculiar behavior emerges at values that correspond to the exact
filling of some number of Landau levels. The first data demonstrating these facts was published by
Klaus von Klitzing and colleagues in 1980, and is reproduced in Fig. 3. The discovery won Klitzing
the 1985 Nobel prize in Physics. Two questions must be addressed:

(1) What is the Hall resistance at integer numbers of filled Landau levels?, and
(2) Why does the resistance jump to the Landau value for nearby values of B, thus creating

plateaus?

4.1. Conductivities. To answer the first question, we can reconsider the classical Hall problem
in light of a primitive yet surprisingly robust model, introduced by Paul Drude in 1900. The
primary assumption of the Drude model is that the conducting electrons, which move freely about
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the sample, will collide elastically with atoms in their surrounding atomic lattice with probability
per unit time 1/τ , regardless of their velocity. (In our isolated two-dimensional sheet of electrons,
the scattering centers are the impurities in the semiconductor that jut out into the layer.) It is
assumed that the electrons, when they do bounce off an impurity, will scatter into a different state.
But when an exact number of Landau levels are filled, there are no vacant states available to an
electron unless it jumps to a higher Landau level — not likely, considering the low temperature! In
this case the relaxation time, τ , goes to infinity.

What happens in a Drude system with a very long relaxation time? Specifically, we would like
to know about the electrical conductivity when some number of Landau levels are exactly filled. To
do this, we look for a steady-state solution of the Drude equation of motion (which is derived from
first principles in many standard texts), using the classical Hall forces:

0 = −p(t)
τ

+ (−e)
(
E +

p
m
×B

)
which we separate into equations in x and y, and rearrange to find the resistivity tensor equation
E = ‖ρ‖ j: (

Ex
Ey

)
=

m

ne2τ

(
1 ωcτ
−ωcτ 1

)(
jx
jy

)
(4.1)

Figure 3. Source: Klitzing, Dorda, and Pepper, Phys. Rev. Lett. 45, 494-497 (1980)
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with j the current density and ωc the cyclotron frequency, eB/m. When an integer number of
Landau levels are exactly filled, τ → 0 and the resistivity tensor reduces to:

lim
τ→∞

‖ρ‖ =
(

0 B
ne

− B
ne 0

)
=
(

0 h
ie2

− h
ie2 0

)
, i = 1, 2, . . . (4.2)

where the last step reflects a quantum system with Landau energy levels (invoking Eq. 3.14).
So, when i Landau levels are exactly filled, the Hall conductivity (the off-diagonal elements of
‖ρ‖) is a constant function of B, and its value is given by ie2/h. At the same time, the forward
“magneto-conductivity” (on-diagonal elements) is zero.

4.2. A Realistic System. As I showed in section 3, in a perfect two-dimensional sheet of electrons,
all energy levels are confined to the exact integer Landau energies. In a real-life system, where it is
not so easy to manufacture a perfect system, this picture is not quite correct. As I mentioned before,
there are often impurities in the surrounding semiconductor material that jut into the electron layer.
These impurities introduce local variations in the energy levels, and many can even grab electrons
and keep them bound in so-called localized states. Those states don’t conduct electricity!

The effect of an impurity is shown in Fig. 4(a), which is to alter the nearby potential energy
and thereby change the mechanics of how electrons fill up Landau levels.

E

x

F
E

x0, location of impurity

Energy levels with impurities

(a) Impurities alter the local energy po-

tential

E

D(E)

F
E

eB/h electrons

per level

(b) Broadened density of states

Figure 4. A realistic system, showing the effect of impurities

Such a fluctuation could be either a decrease (shown) or an increase in the energy of the level,
resulting in a broadening of the Landau levels as shown in the new density of states, Fig. 4(b).
The essence of this result is that there are an extra number of available electron energy states just
above and below each Landau level that do not conduct electricity.

Suppose now one wants to measure the Hall conductivity as the Fermi energy is lowered from
fully above one Landau level to fully below it, as shown in Fig. 5. At the beginning, localized elec-
tron states with higher energies that the integer Landau energy are being depopulated, resulting in
no change to the number of conducting electrons in that level. During this time, the conductivity
remains constant. Next, and for most of the transition, electrons are being removed from the ex-
tended states, which do conduct electricity, so the conduction of the sample decreases proportionally
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with the decreasing Fermi level. Toward the end, all the conduction electrons have disappeared
from this Landau level, but localized states are still being depopulated, and the conductivity is
again flat, this time at a lower value.

E

D(E)

F
E

Conductivity

E

F
E

Figure 5. Effect of lowering the Fermi energy through one broadened Landau level

In practice, the Fermi energy is effectively lowered by increasing the magnetic field, thereby
increasing the capacity of the lower Landau levels. Thus, as we vary B, we expect to see plateaus
at the values h/ie2 (actually h/2ie2 if we consider spin degeneracy; see the note after Eq. 3.14).

5. On the Extreme Accuracy of the Quantum Hall Effect:
Laughlin’s Gauge Principle

We should also expect that some nonlinear effects or other unforeseen quantum mechanical
couplings would alter the values near these plateaus, giving it an error that would be depend
on exactly how an experimenter prepared his or her sample. However, data indicates the Hall
plateaus are routinely accurate to the ratio h/e2 to a precision better than 1 part in 107! This
kind of accuracy is unusually good, and implies that there must be some kind of deeper significance
to the underlying physics. When Klitzing first published his data, condensed matter physicists
immediately began working to develop a more fundamental theory to explain this accuracy.

One clue to the strangeness of the behavior is that the electrons appear not to interact with their
host semiconductor material in any way, nor are their properties affected by different geometries of
material. one can remove any interior part of a quantum Hall system — for instance, by drilling
a hole — and the system still behaves just as it did before. Indeed, if we visualize the electron
wavefunctions classically, they are making circular orbits at the radius of the “size” of the wave-
function. Neighboring orbits have trajectories in opposite directions, and so the current they carry
cancels out entirely. The exception is any electron traveling near the edge of the sample, where the
mechanics are more complicated but the result is that not all the current is cancelled. These “edge
currents” play a significant role in our understanding.

The year after Klitzing’s discovery, R. B. Laughlin published an explanation of the IQHE that
is elegant in its ability to predict the effect in a way that is totally insensitive to experimental
particulars. (Laughlin would go on to win part of the 1998 Nobel for his explanation of the fractional
quantum Hall effect; another part went to Horst Stormer, now a professor at Columbia and the
person who created this lab.) Laughlin’s theory essentially demands that the physical, observable
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sheet of electrons obey invariance under transformations of the non-observable electromagnetic
gauge. Imagine that the sample is folded under itself along the x axis, so that it forms a continuous
loop. Let us now assign the coordinates x and y specific orientations so that the direction in which
electron wavefunctions that are extended stretches around the loop (x) and the harmonic oscillator
eigenstates are spaced across the ribbon (y). The magnetic field B still points through the face
of ribbon everywhere (we can keep the same form for the Landau gauge, only now x is a cyclic
coordinate). The setup is shown in Fig. 6.

x

y z

electron

L_x

conducting
electrons periodic

around L_x

V_Hall

Bz

Figure 6. A Quantum Hall ”Ribbon”

We would like to know what happens when the loop is “threaded” with a unit of vector potential
∆A:

A→ Byx̂+ ∆Ax̂.
In such case, we have a new Hamiltonian (cf. Eq. 3.2)

H =
1

2m
[p− e(A + ∆A)]2 − eφ

=
1

2m
(
p2
x + p2

y − 2e(By + ∆A)px + e2(By + ∆A)2
)

(5.1)

yielding the harmonic oscillator part (cf. Eq. 3.9)

−~2

2m
∂2Y

∂y2
+

1
2
mω2

c (y − y0 +
∆A
B

)2Y = EY

and the same relationship between the harmonic oscillator centers and the extended state wavevec-
tors (cf. Eq. 3.10) y0 = px/eB. Evidently, such a transformation will cause a shift in the center of
each electron’s wavefunction in the y direction, across the ribbon, by an amount

y0 → y0 −∆A/B (5.2)

The threading action also produces a phase shift in the wavefunctions along the extended direction
x:

ψ(x) = e
ipxx

~ = e
iy0eBx

~ → e
iy0eBx

~ e
−i∆Aex

~ (5.3)
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This last result implies that in the direction around the loop, electrons may change their phase,
and thereby change the location where they are most likely to be found. Yet the only action we
performed was a transformation of the gauge, which is not supposed to have real, observable effects!
The only way around this problem is to require that the electron remains unchanged — any shift
in vector potential most produce a complete translation around the loop, x→ x+ Lx, so that the
electron looks the same as it did before:

1 = e
−i∆AeLx

~ → ∆AeLx
~

= 2π (5.4)

This results in a quantization of the vector potential

∆A =
~2π
eLx

=
h

eLx
(5.5)

or in terms of the wavefunction centers (5.2):
∆A
B

=
h

eBLx
(5.6)

But if eB/h defines the number of conducting electrons (Eq. 3.14), then we can show the above
equation defines the quantum of vector potential as exactly the spacing between conducting electrons
along y! Thus, for every quanta of magnetic flux added to the system, one electron per Landau
level shifts over by one in the y direction. If, however, an electron is bound to an impurity in a
localized state, we can show that its wavefunction also picks up a phase shift à la Eq. 5.3, but does
not shift location. Hence, the IQHE is an exactly quantized charge pump, and is not disrupted by
the presence of localized states, nor is it affected by a hole drilled in the ribbon. In this way, we
can say the IQHE is of a topological nature.


