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The Standard Treatment from QM Class

Consider the Hamiltonian in the presence of both the DC field from the permanent
magnet H0 = BZµσz, and an RF field perpendicular to that, H1 = b⊥(t)µσ⊥. Assume
that the DC field is much larger than the RF field and points along ẑ: then you can
treat H1 as a perturbation that causes transitions between the eigenstates |+⟩ and |−⟩
of H0. To be definite, suppose that b⊥(t) = 2b cosωt in the ŷ direction. Then, writing
out the Pauli matrices in the Schroedinger representation,

H = H0 +H1 = − h̄
2
γBZ

[
1 0
0 −1

]
− h̄

2
γb(eiωt + e−iωt)

[
0 −i
i 0

]
Assume that the wavefunction

ψ = C+(t)

(
1
0

)
e−iω+t + C−(t)

(
0
1

)
e−iω−t,

where C±(t) are the (time-dependent) amplitudes to be aligned/antialigned with BZ .
Then, putting this wavefunction into the Schroedinger equation with the Hamiltonian
above, and keeping only the more slowly varying exponential piece, you should get:

Ċ± ≈ ±γb
2
e±i(ωL−ω)tC∓,

with ωL = ω+ −ω−, the frequency difference between the aligned and antialigned states
of H0. Differentiating with respect to time lets you uncouple these equations into:

C̈± = ±i(ωL − ω)Ċ± − γ2b2

4
C±.

The frequency difference ωL−ω is how far-off of resonance the RF field is. Assuming an
eΛt time dependence and then solving for Λ, you find that C+(t) and C−(t) each break
into two more pieces (because the quadratic in Λ in general will have two solutions):

C+ = C±
+e

i
ωL−ω±

√
(ωL−ω)2+γ2b2

2
t,
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C− = C∓
−e

−i
ωL−ω∓

√
(ωL−ω)2+γ2b2

2
t.

(It may seem weird that C+ and C− are not monochromatic, but this just means that
|+⟩ and |−⟩ are no longer energy eigenstates.) In your experiments, the initial condition
of the nuclear spins is the thermal average of aligned/antialigned with BZ . Hence, you
get a mixture of initial conditions→solutions; but what matters for your signal is the net
polarization, and it suffices to see what happens to a single polarized state. For example:

C+(0) = 0 → C+
+ (0) = −C−

+ (0)

→ C+(t) =
γb√

(ωL − ω)2 + γ2b2
sin

(√(ωL − ω)2 + γ2b2

2
t
)
ei

ωL−ω

2
t,

and
C−(0) = 1 → C+

− (0) = 1− C−
− (0)

→ C−(t) = e−i
ωL−ω

2
t
(
cos

(√(ωL − ω)2 + γ2b2

2
t
)
+i

ωL − ω√
(ωL − ω)2 + γ2b2

sin
(√(ωL − ω)2 + γ2b2

2
t
))
.

In the TF NMR experiment, once the pulse shuts off, the probe picks up the oscillations
of the x and y components of the polarization P⃗ . The signal from the coil will be
proportional to the values ⟨Px⟩ = 2Re(C+C

∗
−e

−iωLt) and ⟨Py⟩ = −2 Im(C+C
∗
−e

−iωLt).
Near to resonance, this will be mostly

⟨Px⟩ ≈
γb√

(ωL − ω)2 + γ2b2
sin

(√
(ωL − ω)2 + γ2b2t

)
cos(ωt),

⟨Py⟩ ≈ − γb√
(ωL − ω)2 + γ2b2

sin
(√

(ωL − ω)2 + γ2b2t
)
sin(ωt).

The full expressions are

⟨Px⟩ =
γb√

(ωL − ω)2 + γ2b2
sin

(√
(ωL − ω)2 + γ2b2t

)
cos(ωt)

− γb(ωL − ω)

((ωL − ω)2 + γ2b2)

(
1− cos

(√
(ωL − ω)2 + γ2b2t

))
sin(ωt)

⟨Py⟩ = − γb√
(ωL − ω)2 + γ2b2

sin
(√

(ωL − ω)2 + γ2b2t
)
sin(ωt)

+
γb(ωL − ω)

((ωL − ω)2 + γ2b2)

(
1− cos

(√
(ωL − ω)2 + γ2b2t

))
cos(ωt)

The length of the RF pulse and the RF frequency control the direction of P⃗ . A pulse
duration that generates an angle of

√
(ωL − ω)2 + γ2b2t = π is called a π pulse; one
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that generates an angle of π/2 is called a π/2 pulse. Consider a sample with P⃗ ∥ ẑ.
Sufficiently close to resonance, the signal after the π pulse will vanish, because there is
no transverse component; on the other hand, the π/2 pulse maximizes the signal. In
practice, it is easier to find the π pulse, and then find the π/2 pulse by cutting the
duration in half. On-resonance, ωL − ω = 0, so the π pulse has length t = π/γb. As
|ω−ωL| increases away from resonance, the Breit-Wigner-style resonance prefactors get
smaller as |ω−ωL| increases; there will be admixture of the terms proportional to ωL−ω;
and the duration necessary to form a π pulse will shorten.

Mapping the Rabi Oscillation

In order for this to work well, the applied DC field should be as flat as possible. Other-
wise you will not be able to establish a clear π pulse length, because there will be a wide
distribution of ωL’s over the volume of the sample. So before embarking on this part of
the experiment, you should have adjusted the shim coils so as to maximize the lifetime
of the transient for pure water.

The Rabi theory predicts that for different RF pulse lengths, the FID signals should be
the same shape, and differ only in their amplitudes, that is, on the angle through which
the RF pulse tips the spins. So you may see the Rabi oscillation by plotting the size of
the signal (at the same place on each trace) against the pulse length. Knowing the value
of b (see below) and the Rabi period then tells you the size of γ.

An Experiment with 2π Pulses

Here is some data, taken with the TeachSpin apparatus.

The sample (water with some copper sulfate solute) was subjected to a 2π pulse on
resonance (ω = ωL). Then the RF frequency (ω) was adjusted away from ωL. As the
RF moved away from resonance in either direction, the signal amplitude increased–as
one would expect. The pulse length was adjusted until the new signal came as close to
zero as possible. This minimum indicated what ought to be the 2π pulse length (t2π)
for that particular ω. These steps were repeated over the range of RF in the figure.

The blue points show the putative 2π pulse length as a function of the RF (ω). This
clearly peaks in a resonance-like behavior, just around ωL. The red points show a naive
fit to the Rabi formula for the 2π pulse as a function of detuning, ω − ωL:√

(ωL − ω)2 + γ2b2t2π = 2π → t2π =
1√

(νL − ν)2 + (γ/2π)2b2

(a ν is an ω/2π). The fit assumes that the peak is at νL, and takes t2π at resonance to
be 2π/γb. Then these parameters (νL,

2π
γb ) from the peak are used to calculate the rest
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Figure 1: The length of the 2π pulse as a function of detuning from resonance.

of the points. The agreement is seemingly excellent!

Together with a direct measurement of b, a plot such as this will determine γ for the
proton. Use the tuning loop tool to estimate b at the position of your sample via
Faraday’s Law. This requires as precise a measurement as you can manage of the loop’s
area and the voltage it produces during the RF pulse. The RF coil in the probe is only
about 4cm long by 0.5cm diameter, so the field strength varies noticeably with position
in the coil, and so you need to place your loop probe as close as you can to where your
sample was. Recall that the derivation presented here begins with by = 2b cosωt. There
are two rectangular loops on the probe tool, with dimensions L×W , and so on the trace
from the loop tool, the peak to peak voltage is

VP−P = 2× 2bω × 2LW = 8bωLW.

You will notice that although the pulse from the RF synthesizer has a square wave en-
velope, the power provided to the sample does not. When the pulse turns on, the RF
energy in the probe LCR circuit rises exponentially towards its maximum, and then
when the pulse turns off, the RF energy decays away. Hence b is not really constant over
the pulse, and for an accurate determination of γ you have to correct for this fact.

From the beginning of the pulse, b rises toward bMax and then decays to zero after the
driving voltage cuts out at the end of the pulse. On the other hand, the oscillation is
coherent even as the size of b changes. This allows you to replace

θ =
√
(ωL − ω)2 + γ2b2Maxt
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(the angle that you would have for a constant bMax over a square pulse) with

θ =

∫ t

0

√
(ωL − ω)2 + γ2b2tdt,

and on resonance,

θ =

∫ t

0
γbtdt.

So you have

2π =

∫ t2π

0
γbtdt→ γ =

2π∫ t
0 btdt

.

It is easy enough to get bMax from the trace of a long enough pulse, and so you can
figure out

∫ t2π
0 btdt numerically by comparing the trace of the pulse from the loop tool

to the squared-off trace you would get for b = bMax with a duration of t2π. The effect
of this correction becomes less important as you move off of the resonance, because off-
resonance, the γb term adds in quadrature with ω − ωL.

Why do you not look at the same experiment using the π-pulse? The Rabi theory sug-
gests that this might not work as well because the extra pieces proportional to ω − ωL

that appear off-resonance are maximal for a π-pulse. The 2π-pulse however should still
give a nice minimum.

Appendix: The Classical Picture

The Rabi formulas work wonderfully well, but it is also useful to imagine the expectation
value that you measure as a classical magnetic moment. The classical picture is a good
foundation of an intuitive understanding of the signal due to a pulse sequence. It’s also
a nice way to review some of the physics of spinning tops.

A magnetic field acting on a magnetic moment leads to a torque; and if the moment is
proportional to an angular momentum (as it is for spin) then this leads to the equation
of motion

dP⃗

dt
= γP⃗ × B⃗.

This is called the Bloch equation (with no relaxation). For a current loop composed of
a single particle of charge q and mass m moving in a circle with angular momentum
J⃗ , γ = q

2m . This is a universal result for any classical particle. In the course of your
experiments, you will find that this does not describe the proton.

From the cross product, the change in P⃗ is always perpendicular to P⃗ . So in the absence
(or benign neglect) of other processes1, the tip of P⃗ always falls on a sphere of constant
radius. This is called the Bloch Sphere.2 To turn this classical picture into Quantum

1Like relaxation, which you will also investigate in another measurement
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Figure 2: The Bloch sphere.

Mechanics, we could supplement the (θ, ϕ) coordinates on its surface with a rule that
reproduces the QM probablities associated with a state |ψθ,ϕ⟩.

Figure 3: Precession in the DC field. The
“spin” is a supported top with an angular
momentum vector (purple J arrow) pointing
along its axis. A force on the top creates a
torque which causes the direction of the angu-
lar momentum to change. If only a DC force
(the red arrow) is present, the spin precesses
around a cone at a fixed opening angle θ (the
red ∆JF indicates the increment of angular
momentum due to the red F ).

Figure 4: Steering the spin with a co-
precessing perturbation field. The perturb-
ing force (the orange f) makes a torque that
increments the angular momentum (orange
∆Jf ) from one Bloch lattitude to another. At
resonance, the force follows the spin around,
always producing the same torque, and drives
the spin efficiently from latitude to latitude
around the Bloch sphere.

Classically, the “polarization” is a supported top with an angular momentum vector
(purple J arrow) pointing along its axis. A force on the top creates a torque which
causes the direction of the angular momentum to change. If only a DC force (the red
arrow) is present, the polarization precesses around a cone at a fixed opening angle θ,

2Do something great, and you, too, can have a personalized version of a common geometric object!.
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and its tip traces out a circle of constant latitude (the red ∆JF indicates the increment
of angular momentum due to the red F ). The perturbing force (the orange f) makes
a torque that increments the angular momentum (orange ∆Jf ) from one lattitude to
another. At resonance, the force follows the polarization around, always producing the
same torque, with θ always increasing in the same sense.

In this apparatus, the torque is γP⃗×2bŷ cosωt.3 At resonance, the torque is proportional
to

cosωt cosωLt =
1

2
cos(ω − ωL)t+

1

2
cos(ω + ωL)t =

1

2
+

1

2
cos(2ωLt).

You have to integrate this over time to see the change in latitude on the Bloch sphere,
and the cos(2ωLt) term oscillates so quickly that it averages to zero. Only the first term
survives, and is a constant: it is just like the orange f⃗ following the polarization around.

Figure 5: Setup for the calculation of the torque in the θ̂
direction.

Figure 6: The sinc function.
sin(∆t)

∆
at t = 1

and a range of ∆. The larger the detuning
(∆), the smaller the amplitude of the θ oscil-
lation.

When the RF is detuned from ωL, the relative orientation of the rotating field and the
polarization changes with time. Let us follow the motion. Suppose that the perturbing
RF field starts out in the lab ŷ direction and the initial polarization is along ẑ. The
polarization tilts toward −x̂ and proceeds to rotate around the big BZ field at ωL, but

3by = 2b in order to be consistent with the QM calculation above. The frequency will be proportional
to the total field, which is a bit larger than BZ , but I assume that 2b ≪ BZ , so the precession frequency
≈ ωL. This is an approximation, as you’ll see further on. I am also ignoring any relaxation, e.g. assuming
that the pulse duration is small compared to the relaxation time.
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the RF now varies at ω ̸= ωL. The unit vector ŷ = sin θ sinϕr̂+cos θ sinϕθ̂+cosϕϕ̂ and

P⃗ = P r̂ so the θ̂ component of dP⃗
dt = γP⃗ × b⃗ is

P
dθ

dt
= Pγb{cos(ω − ωL)t+ cos(ω + ωL)t}.

The low frequency term will have a much larger effect on the motion. The physical reason
for this is that the cos(ω − ωL)t term stays in-phase with P⃗ for longer, and so is still
more effective at turning it in a consistent direction. So again, drop the high-frequency
term. But now the orange b⃗ sweeps around at a different rate, and after some number
of Larmor cycles, the low-frequency part falls out of phase with the polarization as well.
If |ω−ωL| is large enough, the polarization won’t reach −ẑ before the rate of change of θ
reverses toward ẑ. The larger |ω−ωL|, the quicker this reversal happens. It occurs when
the rotating field has fallen behind the polarization by another π

2 , or |ω − ωL|t = π
2 . At

that time, a polarization that started in the ẑ direction will have descended by

θ =

∫ π
2|ω−ωL|

0
γb cos[(ω − ωL)t]dt =

γb

ω − ωL
.

The indefinite integral is a sinc function (Figure 6):

θ − θ0 = γb
sin[(ω − ωL)t]

ω − ωL
.

The time dependence (for fixed |ω−ωL| ≠ 0) is sinusoidal, with amplitude γb
|ω−ωL| .

4 Off-
resonance, θ oscillates sinusoidally; exactly on-resonance, it grows linearly with time,
and the polarization sweeps around and around, from pole to pole on the Bloch sphere.
If we define the “classical linewidth” as the range of |ω − ωL| for which |θ| can equal π,

then we get |ω − ωL| ≤ γb
π (absolute) or |ω−ωL|

ωL
≤ γb

πωL
(fractional).

The polarization always tries to precess around the field at a given instant, and when the
field itself moves, its behavior becomes complicated. For example, a quick calculation
shows that [dP

dt

]
ϕ̂
= −γbP cos θ sinϕ→ dϕ

dt
= −γ cot θ sinϕ.

This implies that the polarization wobbles a bit in the ϕ̂ direction as well, and this rate
depends on θ and ϕ in a seemingly involved way. A simplifying trick is to ride along with
the rotating b⃗ in a Rotating Reference Frame or RRF. Rotating along with b⃗ makes Bẑ
seem smaller (by ω/γ–see Figure 7) because the frame rotation catches up to the ϕ̂-ward
precession. The combination of real and apparent fields b⃗ + (BZ − ω

γ )ẑ in the rotating
frame is static; and since the Bloch equations are linear in the fields, the motion in the

4It’s instructive to see what happens if you don’t drop the cos(ω + ωL)t term. The same integration
then yields two sinc functions, but the second one has ω + ωL in the denominator. The cos(ω + ωL)t
term is smaller for ω anywhere near resonance–which further justifies dropping it.
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RRF is the same as if the spin were precessing about this static field, which is tilted at
an angle

α = sin−1
( γb√

(ω − ωL)2 + γ2b2

)
from ẑ. The polarization describes a cone around the apparent field in the RRF, and
the frequency of the conical precession is identical to the Rabi frequency derived via
quantum mechanics. This motion is swept bodily around the Bloch sphere in the lab
frame of reference. The compound motion of the tip of P⃗ is a spherical cycloid. The
frequency of the conical precession is the classical analog to the Rabi frequency, while
P sinα is what the Rabi formula predicts for the size of ⟨Px⟩ near resonance.

Figure 7: The effect of the RRF is to subtract some of
the precession due to the DC field (the red arc indicates
the subtracted part). When ωRRF = ω for b, the fields
appear static in the RRF, and the motion is a cone cen-
tered on the effective static field (blue arrow) defined by

b⃗ and the remaining part of the precession due to BZ

(the green arrow).
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