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In many metals, the electrical resistivity (Qi) caused by electron-phonon inter-
action is represented by the following semi-empirical expression, known as the
Bloch-Griineisen relation /1/:
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where T, C, and © are the absolute temperature, a normalization constant, and
a characteristic temperature of the lattice resistivity of the metal, respectively,

Equation (1) has an undetermined constant C and a characteristic tempera-
ture €. Once the parameters C and @ are suitably chosen, (1) can representthe
experimental data on the temperature variation of the resistivity for a variety
of metals, such as not only simpler monovalent metals but also many polyva-
lent and transition metals as well, It is a difficult, however, laborious and
time-consuming task to analyse experimental data by using (1) to estimate two
unknown parameters C and © simultaneously, because (1) involves the integra-
tion procedure, In fact, the analysis of data has been limited in the special
cases /2, 3/ that one or both of them were known. Therefore, it may be highly
desired to devise a certain simpler method that will allow us to estimate the
two parameters,

In Fig, 1, log F(8 /T) is plotted as a function of log (8 /T). Here, F(8/T)
is the integral term in (1). The values of F were computed to five significant
digits by using Simmpson’g rule. In a range of smaller log (8 /T), log F in-
creases nearly as a linear function of log (8 /T) and as the log (8 /T) value in-
creases, the slope of the tangent decreases to zero near log (8/T) = 1. There-

fore, it can be reasonably expected that log F may be represented by a poly-
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) T Fig. 1. log F(&/T) versus log (& /T) plot: ¥(©/T)
is the integral term in (1). The solid line is log
F(&/T) represented by (2); here, ® is the charac-
teristic temperature of the lattice resistivity in
metals

nomial of log @®/T).

The polynomial function is designated as log
F(®T). When log F is represented by a polynom-
inal to ninth order of log (6/T), the function was

obtained as follows;
- ) i
log F(0/T) =S A,(log ©/T))', 2)
i=0
where Ay = - 0.63212, A =3.8883, Ay =
=-0.039627, A = - 0.29215, A, = - 1.2893,

A5: -0.51468, A6 =1,1127, A7 =0,15772, A8 =
= - 0.44200, Ay = 0.099955. The constans A, in (2) were determined by using

the Gauss-Newton method, The maximum value of |(F - F)/F| was 3,12 % and
the average value was 1,09%. Thus it is concluded that F is a good approximate
function of F. In Fig. 1, log F is also shown by the solid curve.

In general, the resistivity of metals can be divided up into the resistivity
caused by electron-phonon interaction, represented by (1), and the resistivity
independent of temperature, known as the residual resistivity. Thus, the resis-

tivity is represented as follows;
Q = Qo + (C/B)(T/8)°F(o/T), (3)

where Qg is the residual resistivity that is approximated by the resistivity mea-

sured at 4.2 K. Now, we define a function f(C,0) as follows;
_ i oAl 12
f(c,e)_]z{ch,e) Q) @

where QJ and Q] are resistivities calculated and measured at temperature T,
c exp 1
respectively, and j represents a series of data measured at Tj and equals the
number of data of a given sample. Therefore, we can find an equation which re-
presents the resistivity-temperature variation of a given metal by estimating

C and © so as to minimize f(C,8). In the present study, Powell’s function minij-

mization method /4/ was used in order to analyse the data and find the unknown
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Fig. 2., Temperature-resistivity variation of a Ti single crystal film with (0001)
orientation: solid curves are the calculated values using F(8/T) or F(&/T) with
C = 97720 and © = 396.6, respectively: i and p beside the curve indicate F(8/T)
and F(8/T), respectively

Fig, 3. Temperature-resistivity variation of a Ti film calculated by using the
temperature-dependent 8(T) function presented in the text

parameters,

In Table 1, the values of C and ® obtained by analysing the experimental re-
sistivity-temperature data of a titanium epitaxial film (1060 nm thick) depo-
sited on a sapphire substrate are indicated with those of other three samples,
In the case of titanium, the estimated value of © is considered to be reasonable
since the values reported by other investigators also cover from ~ 280 to*420K
/5/. The validity of the C value for the present example, however, cannot be
discussed because no informatinn on that is available at all.

Fig. 2 shows the resistivity-temperature variation of a Ti film. Solid cir-
cles represent the experimental values and the two solid curves show the resis-
tivities of the sample calculated by using (3) with the values of C and @ ; one
curve, the tangential slope of which is larger in the lower temperature range

and smaller in the higher temperature range than that of the other, represents
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the resuit calculated by using F(®/T), and the other by using F(©/T), These
two calculated results agree considerably well with each other, Thus, it may
be concluded that the polynomial formula presented here is very useful in the
computer analysis of resistivity-temperature variations of metals, especially
in which a resistivity minimum is observed at a certain temperature /6/,

In the above discussion, the value of 8 is considered to be constant independ-
ent of temperature, however, a closer agreement between the experimental
and the calculated values of resistivity may be obtained by taking account of the
temperature dependence of ® , Fig. 3 shows the temperature-resistivity varia-

tion of a Ti film using a temperature dependent ® formulated as follows;
4 i
e(T) = BT, (5)
i=0

where By = 284.178, B1 =2,1147, B2 = - 1.4310x10'2, B3 = 4.1122x10-5, and
B4 = - 4.3658x10'8., But the discussion about the temperature dependence of ®
obtained is outside the scope of the present study,

Powell’ s function minimization method used was programed by M. Kuno,
The authors wish to express their appreciation to him for his kind consent to
use, One of the authors (Y,.I.) is also pleased to acknowledge the helpful ad-

vice of J. Yoshida in programing.
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