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1 What is Raman Scattering?

Raman scattering is the inelastic scattering of light from vibrational or other excitations
in a sample. Raman differs from, say, fluorescence in that Raman occurs over a very
short timescale, and is a coherent process over virtual states. By contrast, in fluores-
cence, the intermediate excited state of the sample is“really there”. This means that
while fluorescence emissions have a definite color, Raman scattered light is shifted from
and tied to the incoming laser frequency. The Raman shift, measured from the incoming
frequency, corresponds to how much energy has been deposited in the sample, and one
sees peaks in the Raman spectrum corresponding to favored excitations of the sample.

In a Raman experiment, you will see excitations when the (OUT| (scattered) and
|IN) (incident) polarizations of the photon field match (transform like) the symmetry
of the excitation in the sample. If you’re interested, I expand upon this mathematics in
section 5, but for now, think of this fact as sort of like how, for a polarizer, you’ll see light
on the other side when the incident electric field has a component in the transmission
direction. So given a molecular or crystal structure, you can predict which excitations
you ought to see, depending on how you select the polarization of the incoming and
outgoing light.

Hence to see an understandable Raman spectrum, you need to pre-filter your in-
coming light (use a gas laser filtered for plasma lines), define the incoming polarization,
select the outgoing polarization, and filter for color (energy). Using symmetry tables,
you can predict which phonons (in solids) or vibrational /rotational modes (in liquids
and gases) you are allowed by symmetry to see. You need a dark room, a quiet detector,
and a rejection filter for your excitation, because as a higher-order process, Raman scat-
tering is much weaker than the elastic scattering of the excitation. But with a decent
spectrometer, it isn’t very difficult to see the effect.

A successful denumeration of the observed modes then tells you stuff about the bonds
and the phonons. Further refinements of the technique can tell you about electron-
phonon and electron-electron interactions. Add temperature dependence and you can
often pick up evidence of structural and electronic phase transitions for much less than



the cost of a neutron scattering or X-ray spectrometer. From the larger philosophical
perspective, Raman scattering presents an accessible exploration of the consequences of
symmetry in quantum mechanics.

2 The Big Pieces

The spectrometer is a research-grade single-grating Czerny-Turner (slit-mirror-grating-
mirror-out) spectrometer (JY HR-640) that fell upon some hard times. It’s been fixed
up so that the grating moves as it should. There are lasers of at lest two colors for
excitation, and enough lenses and mirrors to make a good transfer of laser light to your
sample, and to focus the scattered light on the entrance slit of the spectrometer. For
detection, there are, as of this writing, two usable low-dark-current CCDs. One is a
liquid nitrogen-cooled camera (Photometrics CH250) and the other is a Peltier-cooled
camera (SBIG ST-8300M).

3 Follow the Light Path!

3.1 Beam Transport: How Light gets to the Sample

The figure below shows the basic setup of the beam transport. A source of more-or-less
monochromatic light is cleaned by bouncing it off a preliminary grating, then sent (via
mirrors) over to the sample. Along the way it passes through one or more lenses and
polarizers, so that it arrives at the sample in a custom-sized, custom-polarized spot.
Note that the shorter the focal length and the larger the beam on the lens surface, the
smaller the focused spot. Can you see why?

Now recall that you don’t really want to see the laser light—you want the other light
emitted when the laser light is shifted. This is a much weaker signal; and in fact even a
weak-looking, less than 1 mW direct laser beam quickly oversaturates, and
can even damage, the detection CCD’s. You almost never want the specular beam,
and you certainly don’t want it at full strength. You want the laser to hit the sample
such that the spectral (mirror-reflected) laser beam misses the collection lens. To hit the
sample around the collection lens while the specular reflection escapes, you can bounce
the laser beam off of one or more mirrors.

3.2 How Light Gets into the Spectrometer

Next, you want to be able to get the light from the sample into the spectrometer. The
usual way to do this is with at least two lenses. The first lens collects light from the
laser spot. The second lens refocuses the collected light on the entrance slit. For higher
signal, you want to collect lots of light. So for a collection lens, you should use a nice
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Figure 1: Beam transport. A high-power beam and some mist have been used to make
the path more visible.
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Figure 2: A simple input train.




fast (large diameter/focal length, or low f-number) lens, and you want the sample as
close to the lens as possible. A simple way to do this and make a real image is to put
the sample at the focus of the fast collection lens. In ray optics, this configuration would
turn the approximate point of the laser spot into a parallel beam. From this parallel
beam, the refocusing lens produces an image at its focus—so the refocusing lens should
have its focus right on the entrance slits. You want the focused spot to be as small as
possible so that, while collecting full signal, the slit can made as narrow as possible.
Hence you also want the refocusing lens to have a short focal length. So as not to throw
collected light away, you also want the refocusing lens to be as big as the collection lens.

3.3 How to Get a Good Image on the Slit

Go through these steps to put a focused image on the entrance slits.

e Turn on the little focusing camera and the monitor, and swing around the flip
mirror. This mirror sends light from the slits through an internal lens that makes
a real image of the slit on the camera. Now open the spectrometer shutter by
issuing the appropriate software command. Check that the focus camera is really
imaging the front (vertical) slits—these determine the spectral resolution. The slits
are focused if you see their sharp edges move around on the monitor when you
adjust the slit width.

e Next, open the slits and center a refocusing lens in front of the shutter. By moving
the lens forwrd and back, try to focus the image of the most distant object you
can see in the monitor. The focal point of this lens is now just a bit in front of the
slits (after all, the object isn’t infinitely far away), but this gets you near where
you eventually want to be.

e Now center the collection lens on the refocusing lens. Leave some space between
them so you can insert a polarizer or a filter later. Move a needle or some other
tiny pointy thing around until you see its focused image appear in the monitor
along with the slits.

e The image of the needle is now falling on the slits, but you can improve things a
bit by just touching refocusing lens back toward the slits, and finding the image of
the needle as before. If you can’t get a focus, that means that the refocusing lens
is too close to the slits. Move it a bit forward from them and try again.

e Now turn on the laser and steer the unfocused beam so you see it hit the needle
in the monitor. Finally, focus the beam into a spot on the needle.

Your sample goes where the needle is, at the focus of the collection lens. When you swap
in your sample, you’ll have to tweak the beam steering and the sample position to get
everything just right. Eventually, you’ll want to close down the slits while keeping the
spot visible.



4 Inside the Spectrometer

To begin to understand how the spectrometer works, refer to the following figure. The
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Figure 3: The light path inside the spectrometer.

basic idea is to make separate copies (one in each color present) of the illuminated en-
trance slit, and put them on a detector. Now the slit is in the focal plane of the concave
mirror (M1), so light from the slit that hits M1 gets sent parallel, to the grating (G).
The grating splits the multicolored parallel beam into a fan of copies. Those copies that
hit the second concave mirror (M2) are refocused onto the plane of the detector. So for
each color present at the M2, one gets a separate spot on the detector. Which section
of spectrum you see depends on how the grating is turned, and on the pitch (grooves
per mm) of G. The more densely grooved is G, the more rapidly the spectrum fans out,
while M2 of course stays the same size. So for a fixed grating angle, you’ll catch less of
the spectrum (but have better resolution) with a finer grating.

4.1 The Central Wavelength

For all of this to be useful, you have to know how position on the detector corresponds
to color. The task is to calculate this spectral range, from the dimensions of the spec-



trometer and from the formulas for diffraction from a grating. You’ll also learn how
this particular commercial spectrometer associates a central wavelength wth a particu-
lar grating position.

First, consider the undercarriage of the spectrometer (note the associated figure).
You'll see a big drive screw. Upon this screw rides a shuttle, which in turn moves a long
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Figure 4: The mechanism.

arm. For reasons that should soon become obvious, this arm is called the sine bar. Upon
the sine bar rides a small wheel, attached to another arm, which appears to turn on a
hinge that goes up into the spectrometer. In fact, this hinge turns the grating. When
the screw turns, the sine bar rides up or down parallel to its axis, which pushes the arm
that turns the grating.

Now consider the following diagram, adapted from the one in the spectrometer man-
ual. The lines [, m, and n are mutually parallel. [ connects the center of the slit to the
center of M1, m goes through the center of G, and the normal to the grating makes an
angle (the grating angle) A with m. n passes through the center of the exit port. Also
note for your later convenience the line r, which connects the centers of M1 and G, and
makes the angle v with m.
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Figure 5: Determining ..




Now, the spectrometer is tuned—that is, M1 and M2 are positioned—so that when
A = 0, the specular reflection of light moving parallel to r from the grating of light from
M1 is ultimately sent out the center of the exit port (via M2) along n. The color of the
light that follws this path is called the central wavelength A.. For a perfectly calibrated
system, this wavelength would correspond to the readout of the odometer on the side of
the spectrometer.

This works because the grating inside the spectrometer is parallel to the arm that
rides along the sine bar, and the sine bar moves along the main screw (see the diagram
below), which makes the distance D along the screw proportional to sin A. Let 6 be the
angle between the normal to G and m, so that § = A — «. Finally, call the deviation
between the ray approaching G and its outgoing partner ¢. For the central wavelength,
¢ = A + . Call the spacing between neighboring grooves of the grating e. The
path length difference between two rays reflecting from neighboring grooves will be
€(sin ¢ + sinf), and you'll see constructive interference along the central wavelength’s
path for

TAe = €(sin ¢ + sin 0)

(x is an integer), or (using a trig identity or two)
TAe = 2esin A cos .

Since « is fixed, for first-order (z = 1) interference maxima, A, x sin A o« D. The
proportionality constant comes from the pitch of the carriage screw.

As an exercise, you can show that this same formula applies when the grating is
turned so that the normal to G is on the other side of r and x = —1. As another,
calculate Assa, the angle appropriate for A\, = 53201&, for a 1200 groove/mm grating
(use v = 7.67936°).

4.2 Beyond the Central Wavelength: Calculating Dispersion

If this were BCCD (Before CCD’s-olden times), you’d be done. You would take your
data by driving the grating through some angle, and recording the readout of a photo-
multiplier tube sitting on the center of the exit port. If times were even older, you'd
be recording a broad spectrum in one go on a photographic plate—but this would be
very difficult to calibrate for intensity. The CCD is an array of pixel detectors that acts
like electronic film—the best of both older methods. However to understand the CCD
spectrum, you need to modify the previous discussion for colors that are maximized off
of the central path.

This isn’t too difficult to do. Referring to the next diagram, note that I've added a
new color A, coming off G at the angle ¢, from G’s normal, with ¢, = ¢. + v. Going
through essentially the same steps, you can show that 2\, = 2esin(A+v/2) cos(A—v/2).
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Figure 6: Dispersion geometry.
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Now this extra angular deviation just carries through the rest of the system. Coming
off M2, )\, will be deflected from the central path of A. by the angle v. Call the focal
length of M2 F. In the focal plane of M2, at the CCD, A\, will make a bright spot a
distance y = F tanv from the spot made by A..

Using the dimensions of the CCD and the known A., you can determine the range
of wavelengths that you can see in one shot (the wavelength coverage)

)\Max - )\Mzn = 2SN Vg COS(AC + VMax)v

as well as the linear dispersion along the CCD in units of (wave)length/length

v 1 . .
dd)g; ~ FE(COS(AC +v/2) cos(y + v/2) —sin(A; + v/2) sin(y + v/2).

As an exercise, find the wavelength coverage that you expect for A\, = 5320 A (use
24.4 mm for the width of the CCD chip and 640mm for F'). Dividing the range by
the width of the CCD, get the average linear dispersion for this setting. Then generate
a plot of the true linear dispersion as a function of position (from -12.2 mm to +12.2
mm) across the CCD. On the same axes, plot the % deviation from the average linear
dispersion.

4.3  Frequency Units

Because frequency, rather than wavelength, is the fundamental quantity of interest,
you will usually convert your spectra from “Intensity vs. Wavelength” to “Intensity
vs. Frequency”. The peaks in this latter plot will correspond to the energies of the
excitations in the sample. In spectroscopy, the usual unit of frequency is the inverse
centimeter (cm™1), which is just the usual frequency (in s=!) divided by the speed of
light in cm/s. A frequency difference of 1 cm™! corresponds to 30 GHz.//

You must be more careful to properly convert dispersion from wavelength/mm to
cm™!/mm. Since A\ = 1/f, 6f = —6A/A?, and a constant linear dispersion d\/dx in
wavelength units becomes, via the chain rule,

df  —1d\

dr ~ M2 dz

when converted to frequency units. The spectral coverage of the spectrometer with the
1200 groove/mm grating installed, with A\. = 50004, is about 1000 cm~!, which is more
than enough to see many phonons in a single exposure.

4.4 Resolution

Colloquially speaking, the resolution is the degree to which you can distinguish bright
spots on your CCD. The spectral resolution is the corresponding minimal difference in
. For a working definition of what is “barely distinguishable” is, the common choice is
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the Rayleigh criterion: two peaks are barely distinguishable if the maximum of one falls
on the minimum of the other. To apply it, you need to know the width of the bright
spot—the distance along the CCD from maximum intensity to zero. For a given grating
of line spacing €, with N lines illuminated, with a bright beam going off at at angle ©
the angular width of the zth maximum is

, A
0(sin®) = Ne

This just describes the change in angle necessary to get a phase shift of = over half
the width of the grating, so that reflections in lines cancel in pairs (as in the standard
analysis for diffraction from a single slit). On the other hand, from the diffraction
maximum condition sin © = z\ (x integer), the next distinguishable peak, 0\ away, will
be deviate from © by J(sin ©) = xzdA. Setting these two d(sin ©)’s equal gives the grating
resolution

oN 1
A Nz’

Using the dispersion to convert this information to a width on the CCD is straight-
forward, and you should find the intrinsic spot size for x = 1 (first-order diffraction)
and N = 5 x 10* (this N corressponds to about half of an 11emx11cm, 1200 groove/mm
grating). Translate this number into a number of opixels, assuming that the width of

one pixel is 24pum.

When the pixel size on the CCD is larger than the intrinsic spot size, the effective
smallest possible spot size is just the pixel size. However the width of the entrance slit,
which is almost always larger than the size of the pixel, usually controls the experimental
resolution. If the pixel size is 24pum, and the intrinsic spot size is 1um, and the slit itself
is 200pum, then the slit spot size will be about about 8 pixels (for F = 640mm and
A= 50001217 check to see that you can ignore diffaction from the slit). Hence for a
large range of slit values, you can predict your experimental resolution pretty well by
multiplying the dispersion by the slit width.

4.5 CCD Wavelength Calibration

The two figures below are representative exposures of the CCD to a multiline source (in
this case, an argon laser, but a mercury vapor lamp would do as well), the second with
the same source, but less well-filtered than the first, and with a longer exposure time.
Here is what I was thinking about this data:

With the grating set at a nominal central wavelength of 5018 A , the first
picture shows three fairly tightly constrained spots of light from the laser.
The lower spot is 4880 /01, and the upper spot is 5145 A (I confirmed this
by actually looking at the diffraction spots on a piece of white paper held in
front of the exit port with the CCD out).
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Figure 7: First multiline calibration image.
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Figure 8: Second multiline calibration image. The beam is less filtered, so more lines are
present. The lines from the first figure have saturated and leaked into adjoining pixels
because of the longer exposure time.
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From the known wavelengths of these lines, their positions on the CCD chip,
and the size of the chip, one calculates the measured dispersion for the spec-
trum. In this case, the calculated linear dispersion is a touch low (11.62
A/ mm), compared to what one expects to see by doing the standard cal-
culation and using the dimensions of the chip and the nominal focal length
of the spectrometer (11.78 A/mm). Yet the experimental dispersion accu-
rately predicts the position of the third expected line (4965 A), and when the
collimation irises on the input train are opened to allow more light in and
the exposure time is lengthened, the same dispersion predicts the position
of a new spot that’s expected to contaminate the input (just about 5017 /i,
second picture). So the measured dispersion is believable.

An examination of the formula for the expected dispersion reveals the source
of the discrepancy: the dispersion ought to vary inversely with the focal
length of the setup, and the ratio of the measured dispersion to the manu-
facturer’s quoted dispersion is about 63/64. For a 640 mm focal length, the
CCD chip is about a centimeter too close, and should be placed a bit farther
back from the last mirror. This would allow the diffraction fan to spread out
just a bit more, leading to the nominal dispersion—but would the focus (and
hence the resolution) suffer? In fact, the focus as it stands is not as perfect
as it could be: the 5145 A spot in the first picture is decidedly blurrier than
the 4880 A spot. In addition to moving the CCD, some tilting of the last
focusing mirror may be necessary.

5 Origin and Use of Raman Selection Rules

This is a slightly more advanced introduction to the symmetry aspects of Raman scat-
tering. For the sake of definiteness, this treatment assumes that the scattering occurs
from phonons in a crystal, although the general results apply to any sort of excitation
in any kind of sample.

The term “selection rule” is shorthand for the set of conditions under which a given
transition matrix element is nonzero. The term “Raman scattering experiment” might
well be shorthand for the determination of the selection rules for light-scattering from a
sample, in the event that the incident and scattered light have different frequencies.

5.1 Some Simple Examples of Selection Rules. The Polarizer Example

Perhaps the simplest selection rule in quantum mechanics is the example of parity. The
parity operator P flips spatial coordinates (z,y, z) — (—x,—y, —z). In an introductory
quantum mechanics class, one often sees the matrix element of an operator like the elec-
tric polarization qﬁ, between two parity-labeled states, (a'|...|a). The question is: which
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pairs of states are connected, and which are not?

The answer is that, since the polarization operator changes sign under the parity
operation, and the entire matrix element is really just some integral, and integrals can’t
care whether we number our axes left-to-right or right-to-left, then the sandwich of states
(@'|...|a) must also change sign. Hence the electric polarization operator can only connect
states of opposite parity. This is the “parity selection rule”.

Here’s another familiar example: the absorption of light by a polarizer. The polarizer
seems to split the light into two parts, one with the electric oscillation E perpendicu-
lar to, the other parallel to, the direction of the little absorbing wires in the polarizer.
Current density J is induced along the wires. In the usual derivation, we > say that the
power absorbed is proportional to J- E and this dot product is zero for E LJ.

Now suppose that the little wires point in, say, the +x direction, and E points wher-
ever it wants. If absorption occurs, how should J go? Imagine that we flip the whole
experiment around: nothing should change, because the electrical interaction can’t de-
pend on our choice of coordinates. Next, just flip the polarizer, but keep E the same.
If J also flipped, this would introduce a phase (-1) in the dot product. But the whole
experiment looks the same! Nothing should have changed. If J also flipped when we
turned over the polarizer, then the absorption would have to be zero. The absorption
can be nonzero only when J can follow E, and it must be zero when J can not.

5.2 Definition of the Raman Tensor

Consider the following matrix element as a representative Raman scattering event:
(OUTIS|IN) = (n'y|S[ny).

This matrix element corresponds to the absorption of a photon by the sample, an inter-
nal transition of the phonon field, and the reemission of a (different frequency) photon.
The scattering operator S represents the effect of the sample. By examining the way
the different parts of the matrix element transform under the symmetry operations of
the total system (ideal lattice plus phonons plus light), we may determine the selection
rules for Raman scattering.

For example, the light part of the matrix element must be invariant with respect
to general three-dimensional rotations (because Maxwell’s equations are invariant under
general rotations and translations). S has the symmetry of the sample, that is, it is
unchanged under the rotations, reflections, etc. that leave the idealized lattice looking
microscopically the same. Thus S always has a phase of +1 under the symmetry oper-
ations.
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Suppose now that we rotate the sample through the symmetry operations of the sam-
ple’s group, while keeping the rest of the apparatus (laser polarizations, lab room) fixed.
Clearly, the result of the experiment should not change: the sample should behave the
same way when considered in any equivalent orientation. In this case we are effectively
rotating the “partial matrix element”

(n'|Sn)

against a fixed background

(]-1)-
Unless |n’) and |n) are the same, that is, unless
<n/|n> =1,

the partial matrix element will pick up a nonzero phase corresponding to the relative
phase of the different phonon states under the transformation. For example, a phonon
consisting of just an upward atomic displacement will acquire a phase of -1 under a
rotation of m about an axis perpendicular to the displacement:

”:_MH.

Now make an assumption: if we we rotate the entire world of the experiment, crystal
plus apparatus, corresponding to the entire matrix element, then there can be no addi-
tional phase. If the phases of the partial matrix element and the photon fields differ,
then by symmetry, the entire matrix element must be zero. The transformation mis-
match of the |7') and |7y) states of the vector potential must exactly compensate for the
phase which we get by rotating the crystal alone, e.g., the change in phase due to the
phonon states. In other words, the product of the phonon states must transform “in the
same way” as the product of the photon states. But photon states can be described by
the vector potential, and vector potential states transform like vectors, so the operator
connecting them must transform like a rank-two tensor.

Hence we find: the partial matrix element representing the transition of the phonon
fields is a rank-two tensor. We’ll call this the partial Raman tensor for the phonon,
R(ph). The three possible values (x,y or z) of the two indices (out/row, in/column) of
R(ph) correspond to polarization directions of the incoming and outgoing light. What
a Raman experiment measures is the total Raman tensor, R, which is a sum of the
R(ph)’s and similar things for other kinds of modes that can live in a sample. In a
typical experiment, one controls the polarization of the incident light, and selects differ-
ent polarizations of the scattered light. In this manner the Raman experiment probes
different components of R.
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5.3 Classification of Phonons: Allowed and Forbidden

Now consider the actions of the sample’s symmetry group on R(ph). The Raman tensor
is a product of phonon states along with an object that can’t pick up a phase. We know
that this whole sandwiched product is a 3x3 tensor.

Furthermore, because (n|n) = 1, the states that are different by a single phonon
(n 4+ 1|n) must transform like a single phonon. This means that under all symmetry
operations, R(ph) must behave the same way as the displacement pattern of the single
phonon.

Suppose you are interested in a particular phonon. From the sample structure, you
have guessesd at the displacement pattern of the atoms involved in the phonon. You can
use this information to predict which incoming/outgoing combination of light polariza-
tions could create one of these. Just put the displacement pattern through the sample’s
symmetry operations, and then perform the same set of transformations on the elements
of an arbitrary 3x3 tensor. Whichever of the 9 tensor elements transform the same way
as the phonon, these correspond to experimental conditions in which the phonon could
be observed. This is an allowed phonon. On the other hand, for a given polarization
condition, if the relative phases add up to zero, then the phonon should be forbidden,
because (according to the symmetry of your sample) you won’t be able to see it.

For example, consider a flat (z,y) plane square molecule with symmetry Cjy:

T =
— 17

Assume the excitation comes in along the z axis, and the scattered light comes out in the
opposite direction, so we can represent our R with a 2x2 matrix and not worry about
polarizations in z. Let’s also denote the experimental polarization conditions by [in, oﬁt].

The square molecule is invariant under the identity, and turns by w/2, w, and
3mw/2 about a z axis through its center. Under the same operations, the polarization
combination[Z, §] rotates to [Z,9], [¥, —Z], [-Z, —y], [-Z, —7], and [Z, —7]. Hence the
phonon states that you should see in [Z, 3] and [¢, Z] must pick up phases of 1,—1,1, —1.
A phonon visible in these conditions should have the same transformation properties,
so the corresponding R(ph) for this phonon will be antisymmetric under the exchange
T < y, with diagonal elements =0, that is,

R(ph) = ( o )

It’s easy to find a displacement pattern which fits the bill: a diamond stretch/squish
distortion.
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You can also start with a displacement pattern and predict polarization conditions.
A displacement pattern that preserves the square would be like the displacement pat-
terns mentioned above, but with all displacements in phase. The matching polarization
conditions are [Z, ] and [, 3], which each have a phase of +1 under all rotations. The
partial Raman tensor for this phonon should look like

R(ph)z(é1 3)

5.4 Enumerating the Modes in a crystal: “Diagonal lons” (requires some group the-
ory)

The phonon modes in a crystal can be classified according to the irreducible representa-
tions of the crystal space group. The actual procedure for enumerating the modes hinges
on the orthogonality of the characters of irreducible representations. The character ta-
bles of the space group for important points in the Brillouin zone are available in books
and online. In addition, you need to identify the symmetry elements (e. g. rotational
axes, mirror planes, etc.) in the unit cell. For this purpose, you might use the excellent
diagrams inThe Analytical Expression of the Results of the Theory of Space Groups, by
Ralph W. G. Wyckoff (Carnegie Institute of Washington, 1930).

For visible light, Raman phonons live near the center of the Brillouin zone (zero
wavevector) because the wavelength of visible light is large compared to the lattice
spacing. We can therefore concentrate on the subgroup of the crystal space group corre-
sponding to zero wavevector. This is just the point group of the unit cell, with symmetry
elements distrubuted according to the particular space group (e. g. , for Dy, it could
be D}}).

For this subgroup, the representation of all zero-wavevector phonons is the one which
simultaneously depicts the vector displacements of all of the atoms in the unit cell-it is
DN dimensional, if IV is the number of atoms in the unit cell and D is the dimension of
the unit cell. Under a symmetry operation of the subgroup, two tiers of transformations
occur.

Firstly, sets of equivalent ions are shuttled among themselves. If, as a basis of the
DN dimensional representation, we use the displacement coordinates of each ion, then
for a given element of the group, only those ions whose identities are unchanged in the
transformation can contribute to the character. For crystals, these are ions that reside on
the rotational axes, reflection planes, etc. The others will be by definition off-diagonal,
and so cannot contribute to the trace.

For each one of these special “diagonal” ions, the contribution to the trace is just

the contribution of a vector displacement of unit length under the given transformation.
The sum of the vector-trace contributions for the diagonal ions gives the trace of the
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D N-dimensional representation for the transformation; the collection of these traces for
the entire group gives the character of this representation for the group.

Once the character of the DN dimensional representation is known, decompose it
into irreducible pieces by using the orthogonality of characters of irreducible represen-
tations. Each allowed phonon will appear once, and so the number of times m(a) a
given irreducible representation o comes up gives the number of allowed phonons of that
symmetry species. If d, stands for the dimension of representation «, the sum rule

Z dom(a) = DN
«
must of course hold. This is a good check of your arithmetic.

For an example, consider again the fictitious square molecule of Cy symmetry. The
character table of Cy is

e Cp Cp C3
A 1 1 1 1
B 1 -1 1 -1
B, 1 i -1 —

Er2 1 —2 -1 4

Furthermore, the only operation that leaves atoms in place is the identity e, which
leaves all four. In two dimensions, the vector character of the identity is obviously 2,
and therefore the number of atoms x the vector character, N4ax¥ = 8, and we should
subtract off 4 for the center of mass degrees of freedom. So using the orthogonality
relation

ZX?*X? = géa,a%
i
to decompose the 2N-dimensional representation (here g=4), compute

dm(a) = (Na(i)xi — 2x7)x§ =4

(2

for each representation «, or one internal vibrational mode per irreducible representation.
These match up with the square-preserving dilation mode (A), diamond stretch/squish
(B), and two degenerate rectangular = and y stretches (E; and E3). For the E doublet,
the phase factors of ¢ suggest that under x — y, Rp — +iRg. One might best isolate
these modes by looking with circularly polarized (& £ i7) light.
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