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1 Introduction

This document does not tell you how to make the experiment go, how to operate the
actual equipment. For those instructions, consult the NMR manual and your TA. The
presentation here is a bit deeper. The first few sections set up some basic ideas of NMR,
and the rest present effects you can measure in the LF apparatus, and some ways to
think about their physical implications.

2 What is Nuclear Magnetic Resonance?

2.1 Precession and Resonance: a Classical Example

From your study of oscillators, you should be familiar with the idea of resonance.
Whenever a system has a characteristic frequency at which it oscillates, vibrates, swings
or spins, it responds readily to an external drive at that same frequency.

You should also be aware of the phenomenon of precession of angular momentum.
Consider a supported gyroscope, spinning very fast about its axis with angular momen-
tum ~J . The gyroscope is subject to its own weight ~F through the center of mass at ~x,
and so ~F induces a torque about the pivot point:

~τ = ~x× ~F =
d ~J

dt
.

In ~J space, ~J will precess in a cone of half-angle θ about the direction of ~F , and the tip
of ~J traces out a circle in a plane perpendicular to ~F . The circumference of this circle
in ~J space is

2πJ sin θ,

and the angular precession frequency is 2π times the quotient of the J-speed by the
J-circumference:

ω = 2π × xF sin θ

2πJ sin θ
=
xF

J
.

1



Figure 1: Precession of a Gyroscope in a Gravitational Field.

The most important point here is that the angular precession frequency is independent
of the angle between ~F and ~J . ω defines a resonance frequency for the system.

Imagine applying, at the top’s center of mass, a moving force ~f that is perpendicular
to both ~J and ~F . To turn ~J efficiently over a period of time, ~f must follow ~J in direc-
tion. Thus “on-resonance,” the new torque due to ~f must turn around with the same
precession frequency ω. On the other hand, when ~f doesn’t follow ~J around at the same
relative angle, it is less efficient at turning the gyroscope over. In that case, ~f is “out of
resonance” with the precession.

With ~f added to ~F , the total motion is a more complicated combination, but notice that
∆J per unit time is a sum of two perpendicular terms, one due to the torque exerted by
the static ~F , and the other due to the oscillating ~f .

2.2 Torque on a Magnetic Moment: Current Loops Precess!

From your introductory physics courses, you know that a magnetic moment ~µ placed in
a magnetic field ~B experiences a torque, ~µ× ~B. This torque tends to align the magnetic
moment along the direction of the magnetic field, and leads to a magnetic potential
energy

U = −~µ · ~B.

Classically, there is a relationship between the magnetic moment of a current loop and
the angular momentum due to the mass of the charge circulating around the loop. For a
single electron of charge q, mass m, speed v, taking time t to complete a loop of radius
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Figure 2: Driving Gyroscope Resonance. A perturbing force, ~f (f � F ), is perpendicular
to both ~F and ~J–that is, the turning motion of ~f is in resonance with the original
precession of ~J about ~F . The new torque due to ~f tips ~J to a new precession circle
without changing the precession frequency about ~F .

R, the angular momentum

J = mvR =
2πmR2

t
.

This corresponds to a current I = q/t, so

J =
2πR2mI

q
.

But for a current loop, µ = I× area= I × πR2, so that

µ =
q

2m
J.

The magnetic moment is proportional to the angular momentum. Putting our current
loop in a magnetic field, this means that

~τ =
d ~J

dt
= ~µ× ~B =

q

2m
~J × ~B!

So the current loop will precess with the Larmor frequency

ωL =
q

2m
B.

Since the magnetic moment carries its own magnetic field, you could hope to detect its
precession from its effects on a stationary pickup coil. This is the basic idea of NMR.
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2.3 Magnetic Resonance

The analogue of driving the gyroscope around with a time-dependent force ~f is driving
the magnetic moment between adjacent energy levels with a time-dependent magnetic
field ~b. Recall that the driving force ~f is perpendicular to the gyroscope’s weight ~F , and
changes direction so that it is always perpendicular to the angular momentum vector ~J .
Likewise, the driving field for the magnetic moment is made with a ~b that is perpendic-
ular to the static magnetic field ~B, and moves around so that is is always perpendicular
to the precessing ~µ.

3 Enter Quantum Mechanics

Quantum mechanically, we expect angular momentum states spaced by h̄, a quantum of
angular momentum. The spin angular momentum of protons, neutrons, and electrons
comes in discrete chunks of h̄/2, with only two possible z components: +h̄/2 (“up”,
or“| ↑〉”) or −h̄/2 (“down”, or “| ↓〉”). The angular momentum of a photon comes in
double-size chunks of h̄. The difference in energy between neighboring Zeeman levels
of a magnetic moment in a magnetic field is

∆E = 2µB.

Precession at ωL is the classical analogue which derives from the spacing of energy levels

Figure 3: Zeeman splitting schematic.

defined by −~µ · ~B. Absorbing a photon at the right frequency ω = 2µB/h̄ induces a
transition between adjacent energy levels. In fact, ω = ωL/footnoteThis shouldn’t be
too surpirising: the quantum mechanical Hamiltonian for the spins looks exactly like the
classical version, with the same magnitudes of µ and B.
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3.1 The Gyromagnetic Ratio and Intrinsic Spin

From the classical argument about current loops, we get the remarkable result that any
magnetic moment composed of a particular kind of charge (proton, electron, etc.) will
precess with the same frequency per unit field ωL = q/2m. However for intrinsic spin,
the kind of angular momentum carried, for example, by (unexcited) protons; this isn’t so.

There is a more general way to think about ωL. We know that the magnetic moment ~µ
will precess in its cone about ~B. In a time ∆t, the angular momentum ~J changes by

∆J = ωLJ sin θ∆t.

But this is also
τ∆t = µ sin θB∆t.

So in general, without specifying exactly how angular momentum and magnetic moment
are connected, we can define

ωL =
µ

J
B.

The field-independent part of this formula

γ = µ/J = ωL/B,

is called the gyromagnetic ratio of the object.

Like all photons, the one which flips the proton spin carries angular momentum h̄. It
must also carry energy 2µPB = h̄γPB = h̄ωL. So γP represents both the Larmor fre-
quency per Tesla, and the angular frequency of the resonance photon per Tesla. More-
over, so long as both spin and orbital angular momenta differences are quantized in units
of h̄, this identification will hold for any isolated magnetic moment whatsoever.

We go to the trouble of defining γ because it is allows us to depend less on our classical
picture of what is really going on between angular momentum and magnetic moment–we
retain only upon the notion that the magnetic moment is proportional to the angular
momentum. And the full classical picture is wrong: the Dirac equation for spin-1/2 point
particles predicts γ = q/m, precisely twice the classical value, and is pretty close to the
experimental truth. The measured proton magnetic moment implies a γP of about three
times what the classical model would predict. The measured neutron moment is not
zero, as the Dirac equation implies it ought to be. So if you believe the Dirac equation,
nucleons cannot be point particles, and must have some sort of internal structure.

4 LF NMR

The main goal of the LF experiment is to measure these nucleonic γ’s. Here’s a schematic
of how you find the resonance frequencies.
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In what follows, ~B refers to a static field with a small, 60Hz ripple field added to it:
~B = ~BDC + ~B1 cos(120πt). The quickly oscillating perturbation field which drives the
resonance is ~b, and f is the frequency at which ~b oscillates (in cycles per second). At the
beginning of each cycle, the sample is polarized: a majority of the spins in the sample
are parallel to ~B.

Figure 4: LF NMR setup.

As the magnetic field is modulated, so is the Zeeman level difference: ∆E = (2µP (B0 +
B1 cos(120πt)). Resonance occurs when this energy difference coincides with the quan-
tum hf of the perturbing ~b field. In the classical picture, at resonance, the ~b field
is turning spins over efficiently, and these are changing the magnetic response of the
pickup coil. In quantum mechanical terms, the ~b field induces a dipole transition from
the up to the down state, absorbing extra energy from the RF field. In either case, at
resonance, the effect is to induce an extra EMF in the same coil that is producing the ~b
field. For a given DC magnet current, your goal is to set the frequency of the ~b field so
that the peaks of extra EMF happen precisely half a modulation cycle apart. When that
is happening, hf corresponds to the Zeeman splitting 2µPBDC defined by the DC field.
If you have done a good field-versus-current calibration, you can then use this informa-
tion to extract µP . In practice, it is best to find the resonance frequency as a function
of BDC and then fit this to a straight line. The slope of the frequency versus field plot
will be γP /2π, from which you get µP . For the record, µP = γP h̄/2 ≈ 1.4× 10−26 J/T,
γP ≈ 2.7 × 108s−1T−1, and so (dividing by 2π to turn ω into f) f/B corresponds to
about 42.29 megacycles per second per Tesla.

The energy levels are never quite perfectly defined–there are inhomogeneities in the ~B
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Figure 5: When the separation between the modulated Zeeman levels matches hf , you
get NMR signal. An oscilloscope trace of the extra coil EMF versus time will display
periodic peaks.

field as well as sample-dependent factors which tend to spread them out a bit. So instead
of seeing an infinitely sharp spike in the EMF, the resonance occurs over a small range
of fields. There are also some fine oscillations in the signal. These happen because, in
the passage through resonance, the collection of spins develops a transverse component.
The oscillations are beats between the instantaneous Larmor frequency of this transverse
component (which changes with ~B) and the fixed frequency f which has been used to
demodulate the coil EMF to make it more visible on the oscilloscope screen.

5 Enter Statistical Mechanics: Curie’s Law of Magnetization

The laws of quantum mechanics are microscopically reversible, which implies that the
RF field will flip any isolated proton ↑→↓ and ↓→↑ equally well. So to see any pro-
ton signal at all, you have to have a disproportionation between spins aligned with and
against ~BDC . The better polarized your sample, the bigger your signal will be. Ideas
from statistical mechanics allow you to predict just how the polarization depends on
~BDC and the temperature of the sample.

Given the energy difference between neighboring angular momentum states, ∆E = h̄ωL,
the relative populations of these states at thermal equilibrium will be

N↓
N↑

= e
−h̄ωL
kBT .

(The ↑ state is the one pointed along ~B.) Here we are applying Boltzmann’s Law.
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This statistical mechanical result does not mean that individual spins remain in the
same state. Rather, it means that because of the availability of thermal energy h̄ωL at
this temperature, the rates of transition R↑↓ and R↓↑ are balanced for this population
ratio. For more about this, see the next section.)

The magnetization Meq is the equilibrium population difference

Meq = N↑ −N↓ = N tanh(
h̄ωL

2kBT
)

For h̄ωL � kBT ,

Meq = N tanh(
h̄ωL

2kBT
) ≈ N h̄ωL

kBT
,

as you can see by expanding the exponentials to first order. This result is called Curie’s
Law (for S=1

2 paramagnets)1. The higher the DC field (so the higher ωL) and the lower
the temperature, the larger the NMR signal corresponding to transitions between the two
levels. Moreover, the larger the energy level difference, the more energy will be required
to flip the spins, and hence the larger the resonance EMF. This is easily seen from the
classical picture: a larger energy level splitting corresponds to a larger ωL, which means
a larger rate of change of magnetic flux. Taken together, these two factors suggest that
the NMR signal strength S ∝ B2

DC . What you actually see will be modulated by the
intrinsic frequency response of your detection electronics. But within the pass band of
your probe, you should see that a bigger BDC yields a larger NMR signal. You might
even consider using the theoretical dependence S ∝ B2

DC dependence to map out the
relative efficiency of the detection electronics as a function of ωL.

6 The LF Relaxation Time T1

A magnetized sample tends to demagnetize when the DC field is turned off. This is
because the ever present thermal fluctuations will tend to redistribute the spins accord-
ing to Boltzmann’s Law for the new energy level structure where there is no energy
difference between ↑ and ↓. On the other hand, if the thermal equilibrium belongs to
a magnetized state, then the fluctuations tend to restore that equilibrium. After your
sample of protons passes through resonance, the magnetization takes a certain amount
of time to recover. The amount that you recover between successive pulses will also
determine your signal strength. One way to characterize the strength of the fluctuations
is the longitudinal relaxation time, T1. The stronger the fluctuations, the shorter
T1, the quicker the recovery, and the larger the signal tends to be.

6.1 How T1 Depends on the Fluctuations

Begin with the two fluctuation-induced transition probabilities per spin per unit time
Γ↓↑ and Γ↑↓, denoting the probability per unit time of a single spin in either state to flip

1Named for Pierre Curie.
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to the other state. The total rate of transition from down to up will be

R↓↑ = N↓Γ↓↑

and the total rate at which spins flip the other way will be

R↑↓ = N↑Γ↑↓.

At equilibrium, the difference of the transition rates will be zero:

R↑↓ −R↓↑ = N↑Γ↑↓ −N↓Γ↓↑ = 0,

which means that in thermal equilibrium

Γ↓↑
Γ↑↓

=
N↑
N↓

= e
E↓−E↑
kBT = e

h̄ωL
kBT .

In thermal equilibrium, the ratio of the transition probabilities depends on the thermal
population of the states, and the tendency for a single spin to go from the higher energy
state to the lower energy state is greater. This might sound paradoxical–after all, aren’t
the laws of nature supposed to be irreversible? The answer has to do with the conserva-
tion of energy. The fluctuating spin must exchange energy with its “environment,” e.g.
the electromagnetic field and the electronic magnetic moments in the sample. So while
the quantum mechanical matrix elements for a single spin-flip either way are the same,
each spin flip probability must also factor in the availability of the energy necessary to
make the transition. Thus the probablity of a transition involving a change in energy
∆ε should look like

Γ∆ε ∝ We
−∆ε
kBT ,

where W represents the quantum mechanical probability for the transition to go either
way regardless of whether the energy is available.

If the environment is always at a temperature T regardless of what the spins are
doing (that is, if the environment has a comparatively huge heat capacity), then the
ratio of the rates for the out-of-equilibrium case will be the same as for the equilibrium
case, and the transition rates will work the same way. Consider an out-of-equilibrium
situation, with N↑ = N↑eq+∆N↑, N↓ = N↓eq+∆N↓, and ∆M = M−Meq = ∆N↑−∆N↓.
Writing plain Γ for Γ↑↓,

d(N↑eq + ∆N↑)

dt
= −Γ(N↑eq + ∆N↑) + e

h̄ωL
kBT Γ(N↓eq + ∆N↓),

and
d(N↓eq + ∆N↓)

dt
= −e

h̄ωL
kBT Γ(N↓eq + ∆N↓) + Γ(N↑eq + ∆N↑).

Since these transition rates are precisely those that preserve equilibrium, the equilibrium
parts of both equations already balance, leaving the out of equilibrium portions,

d∆N↑
dt

= −Γ∆N↑ + e
h̄ωL
kBT Γ∆N↓,

9



and
d∆N↓
dt

= −e
h̄ωL
kBT Γ∆N↓ + Γ∆N↑.

The total number of spins is constant, so that ∆N↓ = −∆N↑. Putting in this informa-
tion, and then subtracting the second rate equation from the first,

d∆M

dt
= −Γ(1 + e

h̄ωL
kBT )∆M,

that is,
∆M(t) = ∆M(0)e−t/T1 ,

with
1

T1
= Γ(1 + e

h̄ωL
kBT ) ≈ 2Γ

for protons at room temperature.

6.2 The Passage through Resonance

The discussion above is valid far from resonance, when the RF field has little chance
of flipping a spin and the overwhelming majority of the spin flips are due to thermal
relaxation. At resonance the situation is different: there will be extra transitions induced
by the RF field. You can account for this situation by adding an induced transition term
to the rate equations:

dN↑
dt

= −ΓN↑ + e
h̄ωL
kBT ΓN↓ + ΓRFN↓ − ΓRFN↑,

and
dN↓
dt

= −e
h̄ωL
kBT ΓN↓ + ΓN↑ + ΓRFN↑ − ΓRFN↓.

The same term is added to both equations, with no relative temperature factor. This
is right, because the RF ~b field is not thermalized with the environment–it supplies or
absorbs energy with equal probability ΓRF per spin per unit time. As the instantaneous
Zeeman splitting ∆E passes through the hf of the appied RF ~b field, ΓRF gets very
big compared to Γ, and spins will flip ↑ to ↓ and ↓ to ↑ with equal probability per spin
per unit time. In terms of detailed balance, the equality of the transition rates (both
equal the same ΓRF ) means that, as long as the RF is on, the spins think they’re in
contact with a thermal bath at T →∞. So while the system is at resonance, you expect
the magnetization to decrease from its thermal equilibrium value to something smaller.
As an exercise, you can find this new equilibrium magnetization by setting the rates of
change to zero. The result will be

Meq,RF = N
1− e−

h̄ωL
kBT

1 + e
− h̄ωL
kBT (1 + 2ΓRF

Γ )

.
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Note that as ΓRF gets large, Meq,RF → 0, as the contact with the “T → ∞ thermal
bath” strengthens. By considering, as before, the deviations ∆N↑ = −∆N↓ from the
new RF equilibrium, you can show that

∆MRF (t) = e
− t
T1,RF ,

with
1

T1,RF
= Γ(1 + e

h̄ωL
kBT ) + 2ΓRF ≈ 2(Γ + ΓRF ).

6.3 The Recovery: How Signal Size Depends on Γ

So in this experiment, the modulating field brings the sample in and out of resonance.
We can use the ideas developed above to see the effects of different relaxation rates on the
signal you can observe. Call the time just before resonance 0−, and the time just after
resonance 0+. Let the time during which the sample dwells at resonance be tres. During
this time, the sample is trying to come to equilibrium with the RF. The signal will be
proportional to the number of spins which flip. The difference in the magnetization just
before resonance and just after is:

S ∝M(0−)−M(0+) = (M(0−)−Meq,RF )(1− e
− tres
T1,RF ) ≡ xM(0−)

(so x stands for the fractional difference in the magnetization). When the sample is out
of resonance, the RF has no effect on the transition rates, and so the magnetization
decays toward its normal equilibrium with the DC field. But everything repeats every
half-period τ of the ripple field B1, so using the regular Γ, and assuming tres � τ :2

M(0−)−Meq = (M(0+)−Meq)e
−2Γτ = ((1− x)M(0−)−Meq)e

−2Γτ

so that

⇒M(0−) = Meq
1− e−2Γτ

1− (1− x)e−2Γτ
,

implying

⇒ S ∝ xMeq
1− e−2Γτ

1− (1− x)e−2Γτ
.

6.4 The Relaxation Saturation Effect

Consider how this signal changes with x, the size of the RF, and 2Γτ , the relaxation
exponent. For very small RF fields and a swift passage through resonance, that is x→ 0,
the signal becomes independent of the relaxation rate:

S ∝ xMeq.

2If we had not neglected tres, then the τ in the exponents would instead be τ − tres.
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That is, if very few spins are flipped, the system is always near thermal equilibrium. On
the other hand, for very large RF fields and given a longer time to equilibrate, x → 1,
and the signal strength depends fairly simply on the relaxation:

S ∝Meq(1− e−2Γτ ).

What is happening is that, when the RF is large enough to flip most of the spins, a small
value of 2Γτ means that the sample remains far out of thermal equilibrium between
resonances, leaving fewer spins to flip. On the other hand, a sample with a large 2Γτ
will regain its polarization before the next resonance. You can test the dependence on
RF field amplitude and time of passage through resonance by comparing the signal for
small and large RF amplitudes, and (with fixed RF amplitude), for small and large ripple
fields.

You can also change the relaxation rate by adding paramagnetic ions to your sample.
It turns out that 2Γτ for pure distilled water is relatively small. The Cu++ ion has a
big magnetic moment. When CuSO4 is dissolved in the water, interactions between
this moment and the proton spins increase the relaxation rate. You can be quantitative
about this effect. If the rate of depolarization of the proton spins is proportional to the
rate at which each given proton encounters a dissolved Cu++ ion, then the change in Γ
should be proportional to the CuSO4 concentration. That is,

Γ = Γ0 + cΓ1,

where Γ0 is the relaxation rate for pure water, Γ1 is the additional relaxation rate per
mole of dissolved CuSO4, and c is the molarity of the solution. Putting this all together,
a plot of NMR signal strength versus CuSO4 concentration (with all else kept constant)
looks like the one below. The effect should be more pronounced for high RF power and
slower parrage through resonance, and should go away as the RF power and the time
spent at resonance gets smaller. In practice, the signal strength reaches its plateau very
quickly, so that to really see the effect requires making some fairly dilute solutions.

7 Other Nuclei

Having found µ for the proton, you are supposed to find µ for 19F and for the deuteron.
Each of these experiments tells you something interesting about nuclear structure.

7.1 Fluorine

µ for the fluorine nucleus is quite close to µ for the proton. According to the shell model
of nuclear structure, the two kinds of nucleons occupy orbitals in opposite-spin pairs. In
this description, 19F has one spare “valence” proton mostly outside an otherwise closed
shell–and so the magnetic properties of the 19F nucleus should closely resemble those of
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Figure 6: Expected NMR signal strength as a function of the dissolved CuSO4 concen-
tration (High RF power).

a single proton. You can probably find the Fluorine resonance from a sample of Teflon (a
“perfluorinated hydrocarbon”) by setting up on the proton resonance and then adjusting
the field downward a little bit.

7.2 Nuclear Physics: the Deuteron

µ for the deuteron is about a sixth of the proton µ. This implies that the neutron,
while electrically neutral, also possesses a magnetic moment, and that in deuterium this
moment is oriented opposite to the proton moment. This is a predicted consequence of
the isospin theory of nucleons. The proton and neutron are actually different isospin=1/2
states of the “nucleon”; “proton” and “neutron” are “isospin up” (|I ↑〉) and “isospin
down” (|I ↓〉) states of the nucleon, respectively. The proton+neutron state of two
nucleons of the deuteron can either be

|I1 ↑〉|I2 ↓〉+ |I1 ↓〉|I2 ↑〉√
2

(Itotal = 1), symmetric under exchange of isospin labels, or it can be the isospin singlet

|I1 ↑〉|I2 ↓〉 − |I1 ↓〉|I2 ↑〉√
2
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(Itotal = 0), antisymmetric under isospin exchange. Since the nucleon is a fermion, the
total wave function

|ψ(1, 2)〉 = |I(1, 2)〉|S(1, 2)〉|~r(1, 2)〉

has to be antisymmetric under the exchange 1 ↔ 2. Hence either all three factors are
antisymmetric, or only one is. Well, it turns out that the ground state of the deuteron is
mostly an orbital angular momentum=0 (symmetric), which is nice for binding with the
strong nuclear force, and an isospin singlet (antisymmetric, which prevents excursions
into unstable biproton states). Therefore the intrinsic spins of the proton and neutron
are, for the most part, aligned: the deuteron has total intrinsic spin of h̄. This leads
to a slight difference in the interpretation of the deuteron resonance frequency. The
induced transitions we have been discussing conserve angular momentum. The photons
of the RF field–indeed, any photons–carry angular momentum h̄. This is enough to flip
the h̄/2 proton between the two possible“down” and “up” states, but a spin h̄ particle
like the deuteron will have three possible projections of the angular momentum on the
direction of the DC field: −h̄, 0, and +h̄. Hence the resonance frequency in the case of
spin-h̄ deuterons corresponds to just f = ∆E/h = µB/h, and not 2µB/h, as it does for
spin-h̄/2 protons. But γD is still ωL/B.

For the record, γD/2π ≈ 6.54 × 106s−1T−1. This means that, compared to the proton
signal, the deuteron signal will be small : remember, both the polarization and the power
absorbed at resonance are proportional to γ. If the deuteron is spin-1, but its moment is
smaller than the moment of the proton alone, then the neutron gyromagnetic ratio γN
must be negative. Suppose that you have measured the deuteron’s magnetic moment,
µD. Having already measured γP for the proton, and assuming the deuteron is |~S| = h̄,
you can use the Landé g formula to figure out the neutron’s γN .

There is an easy quasi-classical way to understand the Landé formula. Consider two
strongly coupled spins, ~sP and ~sN , which add up to deuteron spin ~SD, in the |~sP~sN ~SDMD〉
representation. In combining the spins, the z-components must add: MD = mP +mN .
The big idea is that the individual magnetic moments are slaved to the total spin, so
that only their projections onto the total spin matter:

~µD =
(~µP · ~SD + ~µN · ~SD)

|~SD|2
~SD,

which means that

~µD =
(γP~sP · ~SD + γN~sN · ~SD)

|~SD|2
~SD.

Note that

|SD|2 = (~sP + ~sN ) · (~sP + ~sN ) = |sP |2 + |sN |2 + 2~sP · ~sN ,

~sP · ~SD = |sP |2 + ~sP · ~sN =
|SD|2 + |sP |2 − |sN |2

2
,
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and

~sN · ~SD = |sN |2 + ~sN · ~sP =
|SD|2 + |sN |2 − |sP |2

2
,

so that

~µD =
γP (|SD|2 + |sP |2 − |sN |2) + γN (|SD|2 + |sN |2 − |sP |2)

2|~SD|2
~SD.

The reason for that bit of algebra is that now we can evaluate (~µD)z ∝ (~SD)z using
the s2

P , s2
N , and S2

D and (SD)z operators, which are all diagonal in a |~sP~sN ~SDMD〉 state.
To get |~µ|, evaluate ~µz as an operator in the top (MD = 1) state, which is simply | ↑P ↑N 〉:

|~µ| = 〈↑↑ |(~µD)z| ↑↑〉

which is

〈↑↑ |γP (SD(SD + 1) + sP (sP + 1)− sN (sN + 1)) + γN (SD(SD + 1) + sN (sN + 1)− sP (sP + 1))

2SD(SD + 1)
MD| ↑↑〉

⇒ |~µD| =
(γP + γN )

2
h̄.

Well, that makes sense: the proton and neutron contribute equally and with the same
sign to the total angular momentum, so the net gyromagnetic ratio must be the average.
Since you already know µP , you can use this result to get a reasonable estimate for µN .
I will leave it to you to calculate γN in terms of what you have measured. For the record,
γN/2π ≈ −29.2× 106s−1T−1

Extra Credit

The value you get for µN is only approximate, because the nucleon-nucleon interaction
mixes states of different orbital angular momentum. Using the nominal µN of −9.66×
10−27J/T in place of your estimate, you can recalculate 〈|µD|〉 for both the l = 0, s = 1,
J = 1, MJ = 1, and the nearest state with the same parity, l = 2, s = 1, J = 1, MJ = 1
to estimate the relative proportions of the two in the true deuteron ground state. Here
are the complications:

• In the l = 2, s = 1 calculation, the orbital motion of the proton/neutron pair
contributes to the magnetic moment as well, with the orbital gyromagnetic ratio
of γO = e

2MP
. That is, ~µD = γO~l + γN~sN + γP~sP .

• To get the expectation value of ~µD in this state, you must figure out how to rewrite
~l · ~J in terms of operators which are diagonal in the |ls; JMJ〉 basis.

• To take the expectation value, you will have to construct the top M = 1 state of
the |l = 2, s = 1; J = 1MJ〉 set. The easiest way is to recognize that

|21; 11〉 = α|22〉|1−1〉+ β|21〉|10〉+ γ|20〉|11〉
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and the fact that the total raising operator J+ = L+ + S+ on this state must
give zero. This yields proportionalities amongst the Clebsch-Gordon coefficients
α, β, γ, and since you also know that |α|2 + |β|2 + |γ|2 = 1, you will have enough
information to determine them all. For the general calculation of Clebsch-Gordon
coefficients, see R. Shankar, Principles of Quantum Mechanics, chapter 14. For an
interesting point of view on this standard calculation, see vol. 3 of R. P. Feynman,
The Feynman Lectures on Physics chapter 18.
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