
Chapter 2

Low-Temperature Materials Properties

Before delving into the fluids and processes associated with helium cryogenics, it is

important to first have a working knowledge of the relevant properties of other

materials at low temperatures. This knowledge is valuable in part because materials

have behavior that must be taken into account when considering the problems

of refrigeration, heat transfer, or storage of low temperature helium. In addition

as seen in subsequent chapters, many of the properties of helium are understood in

terms of physical models that were primarily developed to treat the properties of

different materials at low temperatures.

The study of material properties at low temperatures continues to be an active

field of research. Current investigations include studies of the properties of

materials at ultralow temperatures, T� 1 mK, new materials such as alloys and

composites as they depend on external variables such as temperature, pressure and

magnetic field, and new types of investigation on traditional materials. Much of this

work is fundamental in nature. On the other hand, since many material properties

play an important role in the design and construction of low-temperature systems,

it is essential to have a thorough knowledge of their behavior.

The present chapter is a survey of those properties that are of greatest importance

to cryogenic applications. Included in the discussion are the behavior of state

properties such as the internal energy and heat capacity, thermal expansion or

contraction, transport properties including the electrical and thermal conductivities,

and finally mechanical properties. The discussion concentrates on solid elements

and alloys. The special properties of superconductors will also be included although

the discussion is brief due to space limitations. Most of the descriptions are based

on either thermodynamic or solid-state physics principles. More extensive dis-

cussions of these topics may be found in textbooks on the relevant subjects [1, 2].

In addition, for applications there are a number of property databases [3, 4] and

books [5, 6] that collate available experimental data and can be useful in analysis

and design.
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2.1 Heat Capacity

The heat capacity is a fundamental state property of matter. It represents the amount

of energy needed to raise the temperature of a known quantity of a material one

degree. The heat capacity per unit mass is called the specific heat. In cryogenic

systems, the heat capacity of a material is integral to numerous calculations

including: the dynamics of cooling devices from superconducting magnets to

sensors, thermal energy storage, dynamic thermal loading on refrigeration systems,

and transient heat transfer.

As with many physical properties, the heat capacity is defined in terms of

other thermodynamic state variables. In particular, it can be written as a derivative

of either the entropy S or internal energy E. Because these state functions are

described in a liquid–gas system in terms of an equation of state relating

pressure p, temperature T, and specific volume v, one variable usually must be

held constant in the definition of the heat capacity or specific heat. For example,

the constant volume heat capacity is written in terms of a derivative of the entropy

or internal energy as,

Cv ¼ T
@S

@T

� �
v

¼ @E

@T

� �
v

(2.1)

while the constant pressure heat capacity may be written

Cp ¼ T
@S

@T

� �
p

¼ @E

@T

� �
p

þ p
@v

@T

� �
p

(2.2)

It is also possible to define the heat capacity with other external variables held

constant. For systems where magnetic properties are of importance, CH or CM may

be used to designate the heat capacity at constant applied magnetic field or

magnetization. This topic is of particular interest in magnetic cooling systems and

is discussed in Chap. 10.

A useful relationship between Cp and Cv is obtained from thermodynamic

expressions and is given by

Cp � Cv ¼ �T
@v

@T

� �2

p

@p

@v

� �
T

¼ Tvb2

k
(2.3)

where b ¼ 1
v

@v
@T

� �
p
is the volume expansivity and k ¼ � 1

v
@v
@p

� �
T
is the isothermal

compressibility.

An extensive amount of experimental data exists for the heat capacity of solids

at low-temperatures. For simple solid materials such as metals and crystalline

insulators, there is a very good match between experiment and theory. For example,

measurements near and above room temperature give close correspondence with
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the classical model of harmonic oscillators due to DuLong and Petit for which

the heat capacity is equal to 3N0kB¼ 3R, where N0 is Avogadro’s number¼
6.023� 1023 molecules/mole and kB is Boltzmann’s constant¼ 1.38� 10�23 J/

molecule K. The gas constant R¼ 8.31 J/mol K. This classical model is based on

the equipartition of energy which assigns ½kBT to each of the three kinetic energy

and three potential energy degrees of freedom in the three-dimensional solid.

At low temperatures, there is markedly different behavior according to the type

of solid considered. Over most of the cryogenic range for crystalline solids, the

dominant temperature dependence is proportional to T3. At very low temperatures,

T≲ 10 K, crystalline insulators maintain the T3-dependence while metals have heat

capacities that become linearly proportional to temperature as T! 0.

Non-crystalline amorphous materials also have a heat capacity is proportional to

Tn where n ~ 3. Finally, the difference between Cv and Cp becomes negligible as

T! 0 for all solids. This fact can be used in conjunction with (2.3) to show that

the volume expansivity, b, must also go to zero at very low temperatures.

2.1.1 Lattice Heat Capacity

Two relatively simple theories are available to describe the general behavior of

the heat capacity of metals and crystalline insulators over the entire temperature

range of interest [1]. The first such theory is based on the energy contained in the

quantized lattice vibrations or phonons that exist in a solid. For most solids, except

metals at very low temperatures, this phonon contribution to the heat capacity

dominates.

To calculate the phonon heat capacity, we begin with an expression for the

internal energy Eph of an ensemble of phonons as a function of their characteristic

frequencies o,

Eph ¼ h

2p

ð
DðoÞnðoÞodo (2.4)

In this case, D(o), the phonon density of states, describes the fraction of

phonons that occupy a particular energy level characterized by its frequency o.
The function n(o) is the statistical distribution function, which for phonons obeying
Bose-Einstein statistics, is given by [7],

nðoÞ ¼ 1

eho=2pkBT � 1
(2.5)

with h¼ 6.63� 10�23 J s is Planck’s constant. The model-dependent choice in the

theory is included in the selection of the proper density of states function, D(o).
This problem can be quite complicated depending on the detailed nature of the

excitations within the solid. Fortunately, many materials at least approximately

obey the simplifying assumptions inherent in the Debye model.
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The Debye model assumes that the density of states is described by a continuum of

levels up to the characteristic frequency oD, referred to as the Debye frequency. The

density of states is then proportional to o2 and is shown schematically in Fig. 2.1.

Inserting the Debye density of states and distribution function into the equation

for the internal energy of the phonons, (2.4), a nearly closed-form solution for this

quantity is obtained,

Eph ¼ 9RT
T

YD

� �3 ðxD
0

x3

ex � 1
dx (2.6)

where x¼ ho/2pkBT, xD�YD/T. The Debye temperature YD is defined in terms of

the maximum phonon frequency, oD, see Fig. 2.1. The Debye temperature is

characteristic to a particular material and has a simple form,

YD ¼ hc

2pkB
6p2

N

V

� �1=3

(2.7)

where c is the speed of sound in the material and N/V is the number of molecules

per unit volume. In real materials, the Debye temperature may be a function of more

variables than just the number density as described in (2.7), so the above description

is only an approximation [1].

The heat capacity in the Debye model can be calculated directly from differen-

tiation of the internal energy, (2.6), with respect to temperature

Cph ¼ 9R
T

YD

� �3 Z xD

0

x4ex

ðex � 1Þ2 dx (2.8)

Fig. 2.1 Density of states

D(o) versus o for the Debye

model for a constant phonon

velocity
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The definite integration within (2.8) can be easily performed numerically once YD

is known. However, one can obtain considerable insight be studying the limiting

form of Cph, which can be checked by evaluating (2.8) at either high or low

temperatures relative to YD.

In the high temperature limit, xD� 1, the exponentials within the integral may

be expanded as ex ~ 1+ x and simply integrated leading to a constant value for Cph

Cph ¼ 3R for T � YD (2.9)

which is the classical Dulong-Petit limit. Note that the heat capacity per mole is

constant in this range and on the order of 25 J/mole K. On the other hand, at low

temperatures, xD � 1, the upper limit of the integral may be taken to be infinite,

which makes the exponential terms dominant. The result leads to constant value for

the definite integral and a cubic temperature dependence for the heat capacity,

Cph ¼ 12p4

5
R

T

YD

� �3

for T � YD (2.10)

which accurately reproduces the cubic temperature dependence of the heat capacity

observed for many materials at low temperatures. Thus, a measurement of the

heat capacity of a solid at low temperature is one way of determining the Debye

temperature. Note that (2.10) indicates that low Debye temperature materials will

have relatively larger heat capacities at low temperature, which is technically

significant for refrigeration.

The simplicity of the Debye model and the dominance of the phonon contribu-

tion to the heat capacity over most of the relevant temperature range makes it a

useful tool for approximate calculations in cryogenics. One can simply tabulate the

Cph and Eph/T in terms of T/YD as is shown graphically in Fig. 2.2. These are

universal forms for the Debye phonon heat capacity and internal energy in Joules/

mole K that depend only on the value of YD. For most solid materials, the Debye

temperatures range from 100 to 1,000 K with examples listed in Table 2.1. This

simple analysis is usually accurate to within 20%.

Example 2.1

Using the Debye model, Fig. 2.2, estimate the change in internal energy of a 1 kg

copper block when it is cooled from 300 to 80 K.

Molar weight of copper is 0.0635 kg/mol. Thus, 1 kg¼ 15.75 mol.

The Debye temperature of copper is 343 K (see Table 2.1).

At 300 K, T/YD¼ 0.87 and at 80 K, T/YD¼ 0.23

From the graph, Eph/T (300 K) ~ 15 J/mol K; and Eph/T (80 K) ~ 6 J/mol K

Thus, the internal energy is dominated by its 300 K value. For the 1 kg copper

block,

Eph ~ [15 J/mol K � 300 K+ 6 J/mol K � 80 K] � 15.75 mol¼ 63 kJ.

Note: This problem could also be solved numerically by integration of (2.8).
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Fig. 2.2 Debye specific heat and internal energy functions

Table 2.1 Debye temperatures for com-

mon elements in cryogenics [1]

Element YD (K)

Al 428

Au 165

Cd 209

Cr 630

Cu 343

Fe 470

Ga 320

Hf 252

Hg 71.9

In 108

Nb 275

Ni 450

Pb 105

Sn 200

Ti 420

V 380

Zn 327
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2.1.2 Electronic Heat Capacity

For metals at low temperatures, T< 10 K, there is an additional significant contri-

bution to the heat capacity due to the energy contained in the conduction electrons.

Fortunately, as with the phonon contribution, the electron contribution to the heat

capacity can also be approximately described by a simple theory. The free-electron

model treats the conduction electrons as a non-interacting gas of spin ½ particles.

Thus, as in the case of the Debye model, the internal energy of the electron gas Ee is

written in terms of the density of states D(e) [1],

Ee ¼
ð
DðeÞf ðeÞede (2.11)

where e is the electron energy used as a variable in this case instead of frequency

in the Debye model. The density of states in the free-electron model is written,

DðeÞ ¼ V

2p2
m

2p2

� �3=2

e1=2 (2.12)

Since electrons are spin ½, they must obey Fermi-Dirac statistics, which means

that each energy level can have no more than one electron. The Fermi – Dirac

distribution function is [7],

f ðeÞ ¼ 1

eðe�mÞ kBT= þ 1
(2.13)

where m is the chemical potential, which is approximately equal to the Fermi

energy, ef, at low temperatures [1].

The free-electron model defines the Fermi energy ef in terms of the total number

of free electrons per unit volume, Ne/V

ef ¼ h2

8p2me
3p2

Ne

V

� �2=3
(2.14)

where me is the mass of an electron equal to 9.11� 10�31 kg. Thus, the Fermi

energy only depends on the number density of electrons. One can also define a

characteristic temperature, called the Fermi temperature, TF¼ eF/kB ~ 10
4 K.

Ordinarily and certainly in cryogenics, the electron temperature in a metal is far

below the Fermi temperature so that only a small fraction of the electrons near the

Fermi surface contribute to the thermal properties. Because T� TF, the electrons in
a metal generally are referred to as a degenerate Fermi gas. For a degenerate Fermi

gas the internal energy (2.11) can be simply evaluated. The electronic contribution

to the heat capacity then turns out to be linearly proportional to the absolute

temperature,

Ce ¼ gT (2.15)
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where g ¼ 1
3
p2DðeFÞk2B is sometimes called the Sommerfeld constant with D(eF)

being the electron density of states evaluated at the Fermi energy (2.14). The

Sommerfeld constant has been measured for many metals and some typical values

are listed in Table 2.2. To give a rough idea of the importance of the electronic

contribution to heat capacity, one should note that for copper the electron and

phonon contributions are equal at about 3.8 K.

2.1.3 Heat Capacity of Special Materials

The above general trends in the heat capacity of solid materials are fairly universal.

However, they do not describe all materials and the usefulness of the Debye and

free electron models is limited. In other cases, the knowledge of the heat capacity of

materials is more empirical.

Figure 2.3 is a plot of the specific heat of a variety of materials used in

cryogenics [6]. Note that these materials display similar trends in Cp to the theory

discussed above. The pure metals (Fe, Cu, Al, Be) show a linear dependence at low

temperatures (T< 10 K) followed by a transition region where Cp is proportional to

T3 and finally appproach a near constant value above 100 K. The metallic alloys

(stainless steel, brass) generally do not display the linear region due to a smaller

contribution by free electrons otherwise their behavior is similar to that of pure

metals. Non-metals (Pyrex, glass resin) show only a Tn dependence (n ~ 3) at low
temperatures due to the dominance of the phonon excitations.

Also, there are certain special materials that have anomalous low temperature

heat capacities that are unique and also significant for cryogenic applications.

Table 2.2 Coefficient of the electronic specific heat

for various metallic elements of technical interest [1]

Element g(mJ/mol K2)

Ag 0.646

Al 1.35

Au 0.729

Cr 1.40

Cu 0.695

Fe 4.98

Ga 0.596

Hg 1.79

In 1.69

Nb 7.79

Ni 7.02

Pb 2.98

Sn 1.78

Ti 3.35

V 9.26

Zn 0.64
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One such class of materials are those that undergo magnetic ordering transitions

at low temperatures. These transitions produce a large peak in the specific heat,

see Fig. 2.4. Most of these materials consist of rare earth compounds where the

magnetic ions such as gadolinium (Gd++) undergo ordering at low temperatures.

These materials are useful as thermal capacity stores in low temperature cryocooler

regenerators, a topic discussed in that context in Chap. 8. They are also used in

magnetic refrigeration where the order – disorder transition can be driven by

application of a magnetic field. This topic is discussed in Chap. 10.

Finally, superconducting materials undergo phase transitions with a discontinu-

ity in the heat capacity at the onset of the superconducting state, T¼ Tc. Below Tc,
the heat capacity of a superconductor decreases rapidly below that of the normal

state, particularly at very low temperatures where the phonon contribution is small.

Fig. 2.3 Specific heat capacity of technical materials used in cryogenics (Reprinted from

Ekin [6])
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This behavior has to do with the very nature of superconductivity, a topic that is

discussed further in Sect. 2.5.

2.2 Thermal Contraction

All materials experience a change in physical dimension when cooled to low

temperatures. This effect, normally referred to as thermal contraction in the field

of cryogenics, is typically on the order of a few tenths of a percent change in volume

in most materials between room temperature and liquid helium temperatures.

Although the effect is not large in absolute magnitude, it can have a profound

impact on the design of engineering devices operating in a low-temperature envi-

ronment. The thermal contraction coefficients of different materials vary by as

much as an order of magnitude. Furthermore, since most devices constructed to

Fig. 2.4 Volumetric specific heat to metallic compounds with low temperature phase transitions

(Reprinted from Nageo, et al [8])
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operate in cryogenic systems are fabricated at room temperature out of a number of

different materials, one of the major concerns is the effect of the differential thermal

contraction and the associated thermal stress that may occur when two dissimilar

materials are bonded together. Differential contraction is especially important to the

design of low temperature vacuum seals, structural supports, and electrical insula-

tion systems. Thus, it is of considerable importance to understand this behavior of

technical materials. There are a number of good reviews in the literature on this

subject [9–12].

The thermal contraction or expansion has a thermodynamic definition, which

can be combined with other state properties to make predictions of the details of

the properties of materials at low temperatures. For liquids and gases, the most

meaningful form to consider is the volume expansivity defined as,

b ¼ 1

V

@V

@T

� �
p

(2.16)

where b is in general a function of temperature. For solids, where the changes

in individual dimensions may be different due to anisotropic effects, the linear

thermal expansion coefficient,

a ¼ 1

L

@L

@T

� �
p

(2.17)

is a more appropriate and common factor to consider and is the value that is

tabulated in the literature. For isotropic materials, a¼1/3b to first order. For many

common solids near room temperature, the linear expansion coefficient is approxi-

mately constant.

In a solid, the thermal expansion is caused by anharmonic terms in the restoring

potential between the individual molecules. Recall that the Debye model assumes

that a solid is comprised of a set of harmonic oscillators. Therefore, the Debye

model in its simplest form does not predict the existence of thermal expansion.

Anharmonic terms in the interaction potential are what cause the non-zero b. For
molecules in a solid, the anharmonic terms can be represented as variations in the

Debye temperature YD with the specific volume. This variation may be written,

gG � � dðlnYDÞ
dðlnVÞ (2.18)

where gG is referred to as the Gr€uneisen coefficient, values of which for a few

elements are listed in Table 2.3. The Gr€uneisen coefficient, which is nearly constant
over a temperature range down to T�YD/5, can be used along with other thermo-

dynamic properties to calculate the thermal expansion coefficient,

a ¼ gGCvk
3v

(2.19)
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where k is the isothermal compressibility. For metals at low temperatures,

T<YD/25, the dominant temperature dependence of a is in the specific heat,

Cv� gT+ bT3.
At low temperatures, the expansion coefficient is far from linear and actually

approaches absolute zero with zero slope, a fact that can be understood in terms of

thermodynamics. In (2.3), the difference between the constant volume and constant

pressure heat capacity is shown to be proportional to the square of the volume

expansivity b. Since according to the Third Law of Thermodynamics, the quantity

(Cp – Cv) must go to zero as T! 0, it follows that b also must do so. This effect

makes sense physically because the harmonic terms would be expected to dominate

the interatomic potential at such low temperatures.

Because of the nonlinear nature of a and b, it is often more useful to have the

integrated thermal contraction for the purpose of design. Figure 2.5 displays the

integrated linear contraction of a number of common materials used in cryogenic

applications [6]. Note that metals typically have total contractions in the range of

0.5% or less with the lowest value being for Invar, which is a special metal designed

to have a low value of a. Polymers such as epoxy or Teflon contract about three

times as much as metals and can have a total contraction between 300 and 4 K as

high as 2%. Some amorphous materials, particularly Pyrex, have nearly zero or

sometimes negative thermal contraction coefficients.

Composite materials often can have their thermal contraction predicted based on

a linear combination of the two individual materials, taking into account the elastic

modulus of each constituent. This approach to estimating the thermal contraction of

a composite is referred to as the rule of mixtures. However, composite materials are

frequently anisotropic by design, which makes their linear contraction coefficients

dependent on the internal structure and orientation of the component materials.

A clear example of this behavior can be seen in the structural material, G-10, which

is a composite of epoxy and fiberglass. In this case, the thermal contraction of the

composite depends on the volume ratios of the two materials and the orientation of

the fibers within the composite. For example, the integrated DL/L from 300 to 4.2 K

is about 0.25% for G-10 in the fiber direction (wrap) and about 0.75% normal to the

fiber direction.

Table 2.3 Values for the Gr€uneisen
coefficient yG for common elements [1]

Element yG

Ag 2.40

Al 2.17

Cu 1.96

Fe 1.6

Ni 1.88

Pt 2.54
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2.3 Conductivities: Electrical and Thermal

The electrical and thermal conductivities are non-equilibrium transport properties

that determine, among other things, the heat generated due to current flow or the

heat flow due to a temperature difference. In general, the electrical and thermal

conductivity of pure metals is higher than that of alloys, which is why pure copper,

Fig. 2.5 Total thermal expansion/contraction for materials commonly used in cryogenics:

(a) metals; (b) non-metals (Reprinted from Ekin [6])

2.3 Conductivities: Electrical and Thermal 29



aluminum and silver are common electrical conductors or thermal conduction straps

in cryogenic systems. On the other hand, insulating materials and composites do not

carry electrical current at all and for the most part have lower thermal conductivities,

which makes such materials best for thermal and electrical insulating supports.

Some special crystalline insulators have high thermal conductivities that are useful

for electrical insulating connections that require good thermal contact.

2.3.1 Electrical Resistivity of Metals

Near room temperature, the electrical resistivity of most pure metals decreases

monotonically with temperature following an approximately linear relationship.

This trend is the result of electron–phonon scattering and is the dominant tempera-

ture-dependent contribution to the resistivity r(T). At low temperatures, the resis-

tivity trends to a constant value, which is approached when the metal is near liquid

helium temperature. The constant value of low temperature is referred to as the

residual resistivity r0 and is strongly dependent on the purity and amount and

distribution of lattice imperfections in the metal. Generally, these two effects are

additive, obeying what is known as Matthiessen’s rule that the total resistivity is the

sum of two contributions,

r ¼ r0 þ rðTÞ (2.20)

As an example of the behavior of electrical resistivity consider Fig. 2.6, which is

a plot of r(T) for various purities of copper, defined in terms of the residual

resistivity ratio [RRR¼ r(273 K)/r (4.2 K)]. The more pure and defect free the

metal, the higher its RRR value. It should also be noted that the temperature at

which essentially constant resistivity is obtained decreases with increasing purity.

The other point of interest in the figure is that the high-temperature (T� 300 K)
resistivity is essentially independent of RRR, consistent with the dominance of

electron–phonon scattering. This universal form for the resistivity of pure metals

makes them very useful as temperature sensors. For example, platinum resistance

thermometers are often preferred for accurate measurements in the intermediate

temperature regime (30–300 K) where their sensitivity, dR/dT, is roughly constant.

The electrical resistivity is one of the easiest properties to measure and as a result

r(T) is known and tabulated for many elements and alloys of interest [13–18].

The theoretical interpretation of electrical conductivity of metals associates the

loss mechanism with scattering processes between the electrons and the lattice.

Considering a low-frequency transport of electrical current in a metal, we can relate

the conductivity to the mean scattering time, t� l/vF, where l is the mean free path

between electron scattering events and vF¼ (2Ef/m)
1/2 is the Fermi velocity. Ele-

mentary theory of electrical conductivity gives s as,

s ¼ ne2t
me

(2.21)
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where n¼Ne/V is the number of conduction electrons per unit volume and me is

the electron mass.

As mentioned above, there are two principal types of electron-lattice scatter-

ing that determine the magnitude of the electrical conductivity. For fairly high

temperatures, T�YD, the dominant mechanism is due to electron scattering

by quantized lattice vibrations, phonons. A simple way to see the temperature

dependence of this effect is to relate the magnitude of the phonon scattering with

the mean square displacement of the molecules in the lattice, <x2>. In a simple

harmonic solid, this quantity is proportional to kBT, the thermal energy of the

lattice. Assuming that the electrical resistivity is proportional to the magnitude of

phonon scattering, near room temperature the resistivity of metals should also

be proportional to T, a fact borne out at least approximately by the data.

For low temperatures, T<<YD, the phonon scattering decreases with T giving

way to scattering dominated by lattice imperfections. In this domain the resistivity

approaches a temperature-independent value determined primarily by the amount

of impurities and imperfections in the lattice. For metallic elements, a few parts

per million of impurities can have a profound effect on electron transport as can the

amount of cold work generated imperfections. At the lowest temperatures with

the purest samples, the mean free path of the electrons can become very large

approaching the sample size, such that scattering off the surface of the sample can

contribute a size effect dependence to the resistivity.

Fig. 2.6 Electrical resistivity versus temperature of differing purities of copper, r(273 K)

¼15.45nO m (Reprinted from Powell and Fickett [13])
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At intermediate temperatures, T�YD/3, the resistivity varies smoothly between

the two regions. Many metals have a roughly T5 dependence in this regime which

can be attributed to the phonon population being proportional to T3 and

the probability of scattering through large angle having a T2 dependence. The

resistivity is therefore proportional to the product of these two factors.

2.3.2 Magneto-Resistance in Metals

The electrical resistivity of pure metals generally increases with applied magnetic

field. This effect is most significant for pure metals at low temperatures because

of their relatively long mean free paths for electron scattering. Physically, magneto-

resistance comes about from the fact that the electrons in the metal are deflected

from a straight path in the presences of an applied magnetic field. Since the

deflected path will have a greater opportunity for the electrons to scatter, the

electrical resistivity would be expected to increase monotonically with applied

magnetic field. The magnitude of the effect depends on the type of metal, its purity

and the magnitude and orientation of the applied magnetic field.

No simple theory is available for calculating the magneto-resistance of a partic-

ular metal. However, a considerable amount of data exists and correlations are

available for calculating the magnitude of the effect in common metals. For copper,

the magneto-resistance is often tabulated in terms of what is known as a Kohler

plot [19], shown in Fig. 2.7. To utilize this plot one needs to know the RRR¼
r(273 K)/r (4.2 K) of the copper sample, the applied magnetic field (m0H), in this

case transverse to the axis of the sample, and the desired operating temperature.

Fig. 2.7 Kohler plot for magneto-resistance of copper (Reprinted from Fickett [19])
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From this information, one can calculate the magneto-resistance contribution to the

total value of RRR, which in turn allows determination of the effective resistivity

of the metal. However, it is important to keep in mind that this is an approxi-

mate correlation and only suitable for copper. By contrast, magneto-resistance

measurements on pure aluminum do not yield a similar universal correlation.

In general, the magneto-resistance makes the largest contribution to the resistivity

at high field and low temperatures for pure metals.

Example 2.2

For an applied magnetic field of m0H¼ 10 T, calculate the effective RRR for a

sample of copper, which has a RRR¼ 100 at m0H¼ 0.

In this example, the product, m0H � RRR¼ 1,000 T. Using the Kohler plot

for transverse magnetic field, Fig. 2.7, the magneto-resistance contribution can

be estimated to be DR/R0� 3. This value must be added to the resistance of the

metal at zero field, which makes the ratio R10/R0� 4. Thus, the sample has

approximately the same electrical resistivity as a RRR¼ 25 sample on zero

background field. The resistivity of copper at 273 K is 15.6 nO-m [3]. This
means that the resistivity of the copper at liquid helium temperature and B¼ 10 T

should be r ~ 0.62 nO-m, which compares reasonably well with tabulated data,

which gives a value of 0.56 nO-m for these conditions.

The electrical resistivity of metallic alloys is generally higher than that of

corresponding pure metals. Also, the temperature dependence of the resistivity of

alloys is much weaker. Mostly these effects are due to the large amount of lattice

imperfection scattering that occurs in concentrated alloys. The electrical resistivity

of a variety of metallic alloys is given in Table 2.4. Note that the RRR for most

of these metals, which varies from approximately unity for Constantan (Cu57%

Ni43%) and Manganin (Cu84%Mn12%Ni4%) to 2 or 3 for aluminum alloys and

over 30 for PbSn solder is considerably smaller than that of pure metals. Also, the

room temperature resistivity can be very high up to two orders of magnitude greater

than that of pure metals. Both of these features make alloy metals particularly

useful for heaters and instrumentation leads in cryogenic applications.

Table 2.4 Electrical resistivity of various technical alloys (units of nO-m) [3, 14]

Alloy 10 K 20 K 50 K 100 K 200 K 300 K RRR

AL 5083 30.3 30.3 31.3 35.5 47.9 59.2 1.95

AL 6061-T6 13.8 13.9 14.8 18.8 30.9 41.9 3

304 SUS 490 491 505 545 640 720 1.46

BeCu 56.2 57 58.9 63 72 83 1.48

Manganin 419 425 437 451 469 476 1.13

Constantan 461 461 461 467 480 491 1.07

Ti-6%Al-4%V 1,470 1,470 1,480 1,520 1,620 1,690 1.15

PbSn (56-44) 4.0 5.2 16.8 43.1 95.5 148 37

Pt – 0.367 7.35 28 69.2 107 290
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2.3.3 Electrical Conductivity of Semiconductors

Semiconductors have electrical resistivities that typically range from10�4 to 107O-m,

which is many orders of magnitude higher than that of most metals (r ~ 10�8 O-m).

However, in the case of semiconductors, the low conductivity is due more to the

limited number of charge carriers that exist than impurity or phonon scattering.

Semiconductors possess properties that are dependent on the existence of an energy

gap Eg in the electron density of states. Unlike pure metals, which do not have

an energy gap, the number of conduction electrons in a semiconductor varies

exponentially with temperature roughly as,

Nc � e
� Eg

kBT (2.22)

This exponential dependence dominates the resistivity leading to an increasing

value as the temperature decreases. Such variation can be quite strong with the

resistivity increasing over several orders of magnitude between room temperature

and liquid helium temperature with the exact variation depending on the details of

the semiconductor.

Pure semiconductors are insulators at absolute zero because the electrons

cannot be excited above the energy gap, see (2.22). To overcome this limitation,

the conductivity of a semiconductor can be increased by doping it with impurities

that introduce additional charge carriers. Small concentrations of impurities can

change the conductivity of a semiconductor by several orders of magnitude. Due to

the strong temperature dependence of their resistivity, semiconductors are most

commonly encountered in cryogenic applications as temperature sensors with high

negative temperature coefficients. For example, high levels of sensitivity at liquid

helium temperatures can be achieved using doped germanium as a sensor.

2.3.4 Thermal Conductivity of Metals

The thermal conductivity is a material property that determines the temperature

gradient across a substance in the presence of a heat flow. In all materials there are

several contributions to the thermal conductivity k. For metals, the principal

conduction mechanisms are electronic and lattice, with the electronic contribution

being dominant for pure metals. The electronic thermal conductivity can be under-

stood by a similar model as used for electrical conductivity.

By analogy to the process of electrical conductivity, the behavior of k can be

understood in terms of a kinetic theory model for gases of electrons and phonons [20].

Such simple models work very effectively to explain the limiting behavior of the

thermal conductivity. In particular, the thermal conductivity may be written,

k ¼ 1

3
Cvl (2.23)
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where C is the heat capacity per unit volume, v is the characteristic speed, and l is
the mean free path. Using the free-electron model, the electronic contribution to the

thermal conductivity can be calculated by inserting the electronic specific heat,

(2.15), and the Fermi velocity, vF¼ (2eF/m)
1/2, into (2.23). Thus,

ke ¼ p2nk2BTt
3m

(2.24)

where t is the mean scattering time identical to that considered for electrical

conductivity. At high temperatures, T>YD, t� T–1 due to the increase in the

lattice vibrations so that the thermal conductivity approaches a constant value.

At low temperatures, t is approximately constant, since impurity scattering

dominates there, implying the thermal conductivity should be proportional to T.
As an example, Fig. 2.8 shows plots of the thermal conductivities of copper

analogous to Fig. 2.6 for the electrical resistivity. The limiting behavior near

room temperature gives a near constant value k¼ 401 W/m K. With decreasing

temperature, the thermal conductivity rises through a maximum that depends on the

purity of the sample followed by a linear region (k ~ T) at the lowest temperatures.

This system is entirely consistent with the simplified theoretical picture.

Since the electronic thermal and electrical conductivities in pure metals have

similar scattering processes, a correspondence clearly should exist between these

Fig. 2.8 Thermal conductivity versus temperature of differing purities of copper (Reprinted from

Powell and Fickett [13])

2.3 Conductivities: Electrical and Thermal 35



two properties. The Wiedemann-Franz Law generally assumes that for metals

the ratio of the thermal conductivity and electrical conductivity is a function of

temperature only. Furthermore, for the free-electron model, this ratio is a simple

expression,

ke
s
¼ p2

3

kB
e

� �2

T ¼ L0T (2.25)

where the quantity L0¼ (p2/3)(kB/e)
2¼ 2.45� 10�8 W O/K2 is the free

electron Lorenz number. L0 is totally independent of material properties and

temperature.

Experimental evidence indicates that the Wiedemann-Franz Law works only at

temperatures near room temperature and at very low temperatures (T�YD) [21].

This fact is related to the asymmetry imposed on the Fermi surface when it is

subjected to a thermal gradient resulting in the transport of electrons. At intermedi-

ate temperatures, the experimentally defined Lorenz ratio (L¼ k/sT) is almost

always less than L0. The amount of deviation is strongly dependent on the purity

of the sample, with the less pure having a smaller deviation. The overall behavior of

the Lorenz ratios with sample purity are plotted in Fig. 2.9. Considerable effort has

been applied to understanding these effects, the details of which are beyond the

scope of the present discussion.

Fig. 2.9 Electronic Lorentz ratio for pure metals and defect-free metals (Reprinted from Sparks

and Hurst [21])
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2.3.5 Lattice Thermal Conductivity

The lattice contribution to the thermal conductivity of metals, semiconductors and

insulators is also understood in terms of kinetic theory although the thermal carrier

in this case is a phonon gas of lattice vibrations. It is still possible to apply (2.23)

although the heat capacity must be that due to the lattice, Cph, which as we have

discussed above is proportional to T3 at low temperatures. Also, v is the speed of

sound and l is the phonon mean free path. Most insulators and semiconductors have

thermal conductivities that are several orders of magnitude lower than that of

common pure metals. At high temperatures their behavior is complicated by the

details of the phonon density of states, but generally the thermal conductivity

decreases monotonically with temperature. At low temperatures, where scattering

times become approximately independent of temperature, the thermal conductivity

decreases more rapidly, approaching zero as Tn where n� 3.

The thermal conductivity of some technical materials are shown in Fig. 2.10 and

listed in Table 2.5. Because the list includes a wide variety of alloys and amorphous

insulators, a considerable range in values is displayed. These contain only a limited

number of technically interesting materials, indicating that an area of continuing

research is the determination of thermal conductivities of new materials. This

need is particularly evident with the growing use of composite materials for low

temperature applications.

Because the thermal conductivity of most materials used in cryogenic systems

varies with temperature, it is often necessary to integrate the thermal conductivity

over the temperature range of interest to obtain a total or integrated value,

�k T1; T2ð Þ ¼
ðT2
T1

kðTÞdT (2.26)

which has units of W/m. If the temperature dependence of k is known, it is

straightforward to obtain �k for a particular temperature range. One can then

calculate the total heat flux, Q by multiplying the integrated thermal conductivity

by the area to length ratio, A/L.

Example 2.3

Estimate the integrated thermal conductivity for BeCu between 1 and 300 K.

Looking at Fig. 2.10a, the thermal conductivity of BeCu is nearly linear on the

log-log plot and therefore can be represented as k ~ aTn, where it can be shown

that n¼ 1.1 and a¼ 0.4 W/m K1+n as determined from the data. It then follows

that the integrated thermal conductivity is,

�k ¼
ð300
1

aTndT ¼ a

nþ 1
Tnþ1

����
300

1

¼ 0:19 3002:1 � 12:1
	 
 ¼ 30; 300½W=m	

Note that in this case, integrated thermal conductivity is mostly determined

by the upper temperature.
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Fig. 2.10 Thermal conductivity of various materials used in cryogenics: (a) metals; (b) non-

metals [3]. Symbols are used as identifiers for each material
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2.3.6 Contact Resistance

Thermal and electrical contact between materials is a topic of considerable

importance in cryogenics and yet it is only qualitatively understood. Contract

resistance occurring at conductor joints in magnets or other high power applications

can lead to undesirable electrical losses. Poor thermal contact at the interface of a

heat strap can significantly decrease the efficiency of a thermal link in a conduction

cooled system. Thermal contact is also critical in the mounting of sensors for

accurate temperature measurement, where failure to carefully consider this issue

can lead to erroneous results. Thus, it is important to have a basic understanding of

this topic for a wide variety of cryogenic system designs.

Whenever two materials are joined together for the purpose of transporting heat or

electrical current a localized resistance occurs at the boundary. The magnitude of this

resistance dependsonanumber of factors, including thepropertiesof thebulkmaterials,

the preparation of the interface between the twomaterials, whether there are bonding or

interface agents present, and external factors such as the applied pressure.

The electrical contact resistance is of greatest interest in the production of joints

between high purity metals such as copper, where its value can contribute or even

dominate the overall resistance of an electrical circuit. Generally, the contact

resistance in pure metals has a temperature dependence that scales with the

properties of the bulk material, displaying among other traits a purity dependent

RRR. For electrical contacts between pure metals without bonding materials like

solder, the value of the electrical contact resistance decreases with applied pressure

normal to the joint interface. This tendency results from an increase with pressure in

the effective contact area between the two bulk samples. To understand this effect,

consider that the two surfaces have microscale roughness due to how the surfaces

were prepared. As the pressure is increased normal to the surfaces, the asperities

tend to mechanically yield and deform increasing the effective area of contact.

As the bulk material has high conductivity, the contact resistance is mostly due to

the constriction of current flow that occurs at the small contact points [22]. As the

contact pressure is increased, the amount of constriction for current flow decreases,

thus reducing the contact resistance.

Figure 2.12 is a graphical summary of the measured electrical contact resistivity

for various unbonded samples as a function of applied pressure [23]. To obtain the

Table 2.5 Conductivity of various technical alloys (units are W/m K) [3]

Alloy 10 K 20 K 50 K 100 K 200 K 300 K

AL 5083 30.3 30.3 31.3 35.5 47.9 59.2

AL 6061-T6 23.8 50.1 100 120 135 160

304 SUS 0.77 1.95 5.8 9.4 13 14.9

BeCu 5.1 10.3 24 44.5 79.5 112

Manganin 1.7 4.1 10.1 14 17.2 22

Constantan 3.5 8.7 18.1 20 22.8 24.9

Ti-6%Al-4%V 0.87 1.5 2.6 4 5.9 7.7

PbSn (56-44) 20 28.5 40.7 45 48 51
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contact resistance, the contact resistivity should be divided by the contact area,

RB¼ rB/A. There are two things to observe in these results. First, at a particular

contact pressure, there is still a wide variation in the contact resistivity, a result that

is probably due to variations in sample preparation, treatment and oxidation.

Second, the contact resistance generally decreases with applied pressure. The line

in the graph is a rough correlation for the contact resistivity,

rB � 3 p= (2.27)

where p the pressure is in Pa and rB is in O-cm
2. This result is at least qualitatively

consistent with the expected increase in area with contact pressure.

For thermal contact resistance, there are two cases to consider. First is the

thermal contact resistance between metals, which would be expected correlate

with the electrical contact resistance much as with bulk metals. This correlation

is approximately correct for contacts between identical metals. However, if the

contact is between dissimilar metals or if there are solders or other interface metals

involved, the thermal contact resistance can no longer be scaled with rB. This latter
point is particularly significant at low temperatures where many soldiers are

superconducting (Fig. 2.12).

For thermal contact resistance between non-conducting materials, the funda-

mental limit even for ideal contacts is the mismatch in the phonon transport across

the interface [24]. Since the phonon spectra for the two materials are not the same

there is an impedance mismatch that leads to a resistance occurring within roughly

Fig. 2.11 Summary of low

temperature electrical contact

resistance versus pressure.

Dashed line is the fit (2.27)

[23]
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one phonon wavelength of the interface. This effect is known as Kapitza conduc-

tance and is also important for heat transfer in liquid helium, a topic that will be

revisited in Chap. 7. Overall, the theory of Kapitza conductance predicts a heat

transfer coefficient (h¼ 1/R),

hK ¼ 16

15

p5k4B
h3c2

� �
T3 (2.28)

where c is the speed of sound. Note that the speed of sound is proportional to the

Debye temperature, so that low YD materials would be expected to have higher

thermal conductances than materials with high Debye temperature. For most solids,

the factor in parentheses is on the order of 1 kW/m2 K4. Overall, (2.28) places an

upper bound on the magnitude of the thermal contact conductance for insulating

contacts. Real contacts between non-ideal surfaces are more complex and their

understanding is thus more qualitative.

For joints between real materials, the interface is irregular with intermittent

points of contact. In this case, the thermal contact conductance is more determined

by the constriction resistance at the asperities similarly to the electrical contact

resistance in metals. Thus, particularly for deformable materials without bonding

agents, the thermal contact conductance should increase with interface pressure.

Fig. 2.12 Thermal contact conductance as a function of temperature for a variety of contact

preparations and conditions. The contact assumes a 1 cm2 area. Data compiled by Radebaugh [25]

(Reprinted from Ekin [6])
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Experimentally, this correlation is born out with the thermal contact conductance

increasing with pressure as,

h � apn (2.29)

where n � 1 and a is an empirical coefficient [23].

Thermal contact conductance varies over a wide range depending on whether

the contact is insulating or conducting. Figure 2.12 displays a compilation of data for

low temperature thermal contacts [25]. Some general trends can be observed. First, the

thermal contact conductance values at low temperatures can range over six orders of

magnitude, depending onmaterials and surface preparation. This large range ismostly

due to variations of actual contact area and surface preparation. Second, contacts that

are bonded with solder of similar agents that fill the asperities generally have higher

thermal conductances than bare contacts. However, the bonding agents can also

contribute to the interface resistance particularly if the bond region is thick or electri-

cally insulating. In the low temperature region (T< 5 K), most of the data correlate

with a power law,h ~Tn, but there are twodistinct characteristic behaviors. Puremetal-

metal contacts have a temperature dependence that correlates with that of the bulk

metal. Thus, at low temperature h � aT, with the coefficient of proportionality being
mostly determined by sample purity and contact pressure but varying between 10�1

and 10�3 W/cm2K2. On the other hand, if the contact is bonded with solder or indium,

the conductance canbemuchhigher, but at low temperature suchcontactsmaybecome

superconducting. As discussed in the next section, metallic superconductors

have lower thermal conductivities than in the normal state with ks ~ T
3, so that the

thermal conductance can in principle be reduced by introduction of bonding agents.

Finally, if the interface is between two non-conducting materials, then electron

transport is non-existent and the thermal conductance is generally lower following

the correlation scaling with the bulk thermal conductivity, h¼ aTn, where n~ 3.
However, in some special cases involving crystalline insulators, such thermal

conductances can be very high as is seen with the bulk materials, see Fig. 2.10.

2.4 Mechanical Properties

The mechanical properties of materials are also very important to consider when

designing cryogenic systems. Most cryogenic systems require mechanical supports

to carry the loads between ambient temperature and low temperature components.

Thermal transport through structural supports often significantly contribute to the

overall low temperature heat load. Since the thermal conductivity of a structural

material determines the heat load and the structural properties determine the required

dimensions of the support, both the structural and thermal properties must be consid-

ered when designing and optimizing structural components in cryogenic systems.

The two properties that are most often of interest in a mechanical system are the

stress s¼F/A within the material and the modulus of elasticity Ey¼ s/e, where e is
the linear material strain, dx/x. These material properties enter into calculations

such as mechanical deflection and failure modes in mechanical structures.
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Most structural materials are characterized in terms of their uniaxial stress limits.

Typically, the yield stress of a material, sy, is defined as the load that creates a 0.2%
permanent deformation; however, this definition is sometimes not meaningful

particularly if one is considering a brittle material. The yield stress sometimes

refers to the load that produces a distinct change in the slope of the stress–strain

curve. In any case, for the design of structural components in systems, it is

advisable to stay well below the specified yield stress of the material in use;

typically to a maximum stress not exceeding 2/3sy. Furthermore, in an application

involving cyclic loading, this design value must be de-rated even further to take into

account the failure associated with repeated application of load.

The ultimate stress su, represents that level of stress necessary to cause failure

of a particular material under tensile load. In ductile materials, the ultimate stress

is considerably greater than sy and can be associated with substantial permanent

deformation. On the other hand, brittle materials have sy’ su. Composite structural

materials such as fiberglass epoxy have even more complex behavior.

For most common structural materials, the yield and ultimate stresses increase

with decreasing temperature. The magnitude of this increase varies from around

10% in some metallic alloys to over 100% in polymeric materials. The increase in

strength is seen to result from the reduced thermal excitations within the lattice,

which inhibits the spread of dislocations. Listed in Tables 2.6 and 2.7 are respec-

tively the yield and ultimate stress values for several materials commonly used in

cryogenic applications. Values listed are typical and considerable variation can

occur depending on the treatment and form of the particular materials. More

detailed tabulations can be found from several sources in the literature [4, 6].

Table 2.6 Yield stress sy of several materials (units are MPa) [26, 27]

Material sy (0 K) sy (80 K) sy (300 K)

304L-SS 1,350 1,300 1,150

6061-T6 Al 345 332 282

OFHC-Cu (Annealed) 90 88 75

Cu + 2 Be 752 690 552

Brass (70% Cu, 30% Zn) 506 473 420

Inconel X-750 940 905 815

G l0 – CR 758 703 414

Teflon 130 65 20

Table 2.7 Ultimate stress of several materials (units are MPa) [26, 27]

Material su (0 K) su (80 K) su (300 K)

304 L-SS 1,600 1,410 1,200

6061-T6 Al 580 422 312

OFHC Cu (annealed) 418 360 222

Cu + 2 Be 945 807 620

Brass (70% Cu, 30% Zn) 914 804 656

Inconel X-750 1,620 1,496 1,222

G-10 – CR 758 703 414

Teflon 194 86 21
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The modulus of elasticity, or Young’s modulus Ey, represents the change in

stress level needed to cause a unit change in strain while the material is in the elastic

region. Thus, Young’s modulus is simply the slope of the stress–strain curve for

small values of strain. As with the yield and ultimate stresses, Young’s modulus

also increases with decreasing temperature. A list of typical values for technical

materials is shown in Table 2.8. Unlike the limiting stress values, Young’s modulus

is not as strongly affected by material treatment and form.

Before leaving the subject of structural materials, it is worth mentioning a

method for determining the relative merits of different materials for structural

applications. In the simplest example, a figure of merit (FOM) can be constructed

based on the ratio of the allowable stress to the thermal conductivity (FOM¼ s/k)
of a particular material. Thus, high FOM materials have high strength and low

thermal conductivity, such as stainless steel or certain fiberglass composites (G-10).

On the other hand, a low FOM material would have high thermal conductivity and

low strength, e.g. pure metals like aluminum and copper.

Table 2.9 shows the figure of merit for several different materials as a function of

temperature. Note that the highest FOM is for G-10 composite due to its relatively

high strength. On the other hand, clearly pure copper is not suitable for structural

applications.

2.5 Superconductivity

Superconductivity occurs in a large number of elemental metals, alloys and

now in several classes of ceramic materials. This effect, which manifests itself

as an absence of electrical resistivity along with an expulsion of magnetic flux,

was first observed by H. Kamerlingh Onnes in 1911 as part of an investigation of

Table 2.8 Young’s modulus Ey of several materials (units are GPa) [26, 27]

Material Ey (0 K) Ey (80 K) Ey (300 K)

304 -SS 210 214 199

6061-T6 Al 78 77 70

OFHC-Cu (annealed) 139 139 128

Cu + 2 Be 134 130 118

Brass (70% Cu, 30% Zn) 110 110 103

Inconel(X-750) 252 223 210

G-10-CR 36 34 28

Teflon 0.7 2.8 4

Table 2.9 Figure of merit (s/k) for several different structural materials (units are MPa-m-K/W)

Material s/k (4 K) s/k (80 K) s/k (300 K)

304 ss 6,000 160 80

6061 T6 AL 36 3 2

G-10 12,000 1,600 500

Brass 150 9 3

Copper 2 2.5 3
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the electrical resistance of pure metals at low temperatures. First performing such

experiments with mercury, Onnes observed a sharp transition from the normal

resistive state to one which had immeasurably small electrical resistance at a

temperature near the normal boiling point of helium, T� 4.2 K. This new state,

termed by Onnes as “supraconductive,” has been the subject of much fundamental

theoretical and experimental research in the many years since its discovery [28].

In the 1960s, high-field superconductive materials, mainly as Nb3Sn and NbTi,

were discovered spawning a lot of activity in high current technical applications

[29]. In particular, superconductive magnets began to be developed for a wide

range of applications for everything from particle accelerators to magnetic reso-

nance imaging instruments. On a smaller scale, the high current densities in these

materials made possible superconductive electronics for sensors and computers.

Therefore, it is important to note that much of the interest in helium cryogenics is

brought about by the existence of these materials and their applications.

Late in the 1980s, the field of superconductivity was drastically changed with the

discovery of a new class of layered compounds that display superconductivity at

high temperatures, near the boiling point of liquid nitrogen. Today, these materials,

commonly referred to as high temperature superconductors (HTS), are actively

being studied for all sorts of applications as well as for their fundamental physical

properties. Their success still depends on cryogenic systems, but due to their higher

operating temperatures, more effort is being placed on the development of cryo-

genic refrigeration in the range from 20 to 80 K. However, large scale applications

of superconductivity for particle accelerators and fusion energy continue to utilize

NbTi and Nb3Sn and thus require liquid helium cryogenic systems.

In the present context, it is not possible to provide a thorough review of the physics

and properties of all superconductors. For this, the reader is encouraged to seek out

one of several monographs or texts on superconductivity and its applications. The

present discussion, therefore, provides only a brief review of the properties of

superconductors along with some discussion of their usefulness in applications.

2.5.1 Type I Superconductivity

There are two main types of superconductors with the distinction mainly associated

with their electromagnetic properties. Type I superconductors, which comprise

most of the pure elemental superconductors, have a sharp transition to the zero

resistance state and simultaneously a total screening of magnetic flux within

the bulk below Tc, the superconducting transition temperature. Thus, Type I

superconductors are often referred to as perfect diamagnetic materials. The normal

state in a Type I superconductor can be recovered by the application of an external

magnetic field greater than the critical field Hc. Unfortunately, for Type I super-

conductors and their potential applications, Hc has a rather low value, m0Hc≲
100 mT, making Type I superconductors unsuitable for magnet and other high

field applications. Type II superconductors, which sustain the superconducting state

to high fields, are usable for high field applications as discussed in the next section.
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The magnetic field-temperature boundary between the superconducting and

normal state in a Type I superconductor is given by an empirical relationship

between the critical temperature and field,

HcðTÞ ¼ H0 1� T

Tc

� �2
" #

(2.30)

where H0 is the critical field at T¼ 0 K. Listed in Table 2.10 are these parameters

for known Type I superconductors [30]. Note the range of transition temperatures

vary from the highest value of 7.2 K for Pb to 325 mK for Rh. A similar wide

variations in the critical field is evident. It is also interesting to note that metals that

are normally thought of as good conductors, copper, silver and gold, are not

superconductors. This fact is related to the fundamentals of the superconducting

state.

A Type I superconductor exposed to an external magnetic field H<Hc will

exclude the flux from penetrating into its bulk. This behavior, known as the

Meissner effect, is shown schematically in Fig. 2.13. There are essentially two

equivalent ways of looking at the Meissner state. The first is to note that because

the superconductor has no electrical resistance, persistent screening currents

are established on the surface opposing any change of the flux within the bulk.

These currents flow in a layer at the surface of thickness l� 50 nm, known as the

London penetration depth. The London penetration depth is one of two fundamental

characteristic lengths used to define the behavior of a superconductor. The alternate

Table 2.10 Critical temperature and critical field of Type I superconductors [30]

Material Tc(K) m0H0(mT)

Aluminum 1.2 9.9

Cadmium 0.52 3.0

Gallium 1.1 5.1

Indium 3.4 27.6

Iridium 0.11 1.6

Lead 7.2 80.3

Mercury / 4.2 41.3

Mercury b 4.0 34.0

Osmium 0.7 6.3

Rhenium 1.7 20.1

Rhodium 0.0003 4.9

Ruthenium 0.5 6.6

Tantalum 4.5 83.0

Thalium 2.4 17.1

Thorium 1.4 16.2

Tin 3.7 30.6

Tungsten 0.016 0.12

Zinc 0.9 5.3

Zirconium 0.8 4.7
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picture is to consider the superconductor as if it were a perfectly diagmagnetic body

such that its magnetization always equals the negative of the applied field,M¼ –H.
In the superconducting state, these two interpretations lead to equivalent physics.

Mainly, describing a superconductor as being a perfect diamagnet has the advan-

tage of always predicting the flux exclusion condition independent of the order of

the applied field and immersion in a low-temperature environment.

Superconductivity is brought about by the electrons in the metal forming what

are known as Cooper pairs with integer spin and thus obeying Bose – Einstein

statistics. This is a complex quantum mechanical phenomenon. However, one

can get an appreciation for the properties of Type I superconductors that does

not require advanced quantum mechanics by studying the thermodynamics of the

superconducting to normal transition. In the normal state, the thermodynamic and

transport properties of Type I superconductors are essentially the same as those of

other normal metals and are only weakly magnetic (M ~ 0). On the other hand, in the

superconducting state a metal is perfectly diamagnetic withM¼ -H. In follows that
at the transition between the superconducting and normal states, the Gibbs free

energies of the two states must be equal. The differential form for Gibbs free energy

for a magnetic material is written,

dg ¼ �sdT þ vdp� 1

2
m0H

2
c (2.31)

At the critical temperature, the phase transition occurs at constant temperature

and pressure so that gn(Hc)¼ gs(Hc). However, since the normal state is non-

magnetic gn(Hc)¼ gn(0) while the superconducting state is diamagnetic, and gs(Hc)
> gs(0) by the magnetic energy density, 1

2
m0H

2. Thus, the difference between the

Gibbs free energies at zero field may be written as,

gnð0Þ � gsð0Þ ¼ 1

2
m0H

2
c (2.32)

Fig. 2.13 Meissner effect in a superconducting sphere cooled in a constant applied field. Below

Tc, B¼ 0 within the superconductor independent of the order of application of magnetic field and

low temperature environment
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Combining (2.32) with the empirical relationship for the temperature

dependence of the critical field (2.30) yields a relationship for the entropy differ-

ence, Sn � Ss ¼ � @
@T gn � gsð Þ between the two states,

Sn � Ss ¼ 2m0H
2
0

Tc
1� T

Tc

� �2
" #

T

Tc
(2.33)

where S¼ rs refers to the entropy per unit volume of the superconducting material.

Note that at Tc, DS¼ 0, which means that the transition is second order and there is

no latent heat associated with the superconducting-normal transition at zero applied

field. The heat capacity difference, Cn � Cs ¼ T @
@T Sn � Ssð Þ at the transition is

obtained from the derivative of the entropy,

Cn � Cs ¼ 2m0H
2
0

Tc
1� 3

T

Tc

� �2
" #

T

Tc

� �
(2.34)

At Tc, this expression predicts a discontinuous change in the specific heat, Cn �
Cs ¼ �4m0H

2
0 Tc= followed by a decrease proportional to T3 below Tc. Also, recall

from Sect. 2.1.2 that the electronic contribution to the specific heat of metals

dominates at low temperature, Ce¼ gT. Figure 2.14 displays these dependences.

Experiments have confirmed an approximately cubic temperature dependence of

the specific heat for T near Tc. However, at lower temperatures, T< 0.5 Tc,
an exponential temperature dependence is observed. Such behavior is indicative

of an energy gap in the electron density of states and is supporting evidence for the

microscopic theory of superconductivity.

The behavior of thermal conductivity of Type I superconductors can be of

considerable technical utility. Recall that the thermal conductivity of a metal has

two primary contributions due to the transport of electrons and phonons and that it

is proportional to the specific heat. For pure metals at low temperatures, the

electronic contribution tends to dominate. However, in a superconductor, some of

the electrons form Cooper pairs and undergo Bose-Einstein condensation into the

ground state, thus being unable to carry thermal energy. As a result, the thermal

Fig. 2.14 Normalized heat

capacity of superconducting

and normal state of a Type I

superconductor
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conductivity of a pure Type I superconductor is less than that of the normal state for

T< Tc. In the vicinity of Tc, this dependence is approximately cubic in temperature

dropping off exponentially at low temperatures. This behavior is consistent with the

temperature dependence to the specific heat, see Fig. 2.14.

As the normal state can be restored by the application of a magnetic field greater

than Hc, the thermal conductivity of a pure Type I superconductor at T< Tc but
H>Hc should increase relative to that of the superconducting state. In particular, at

low temperatures the thermal conductivity should vary linearly with temperature,

k ~ T, consistent with the free electron model discussed in Sect. 2.3.4. Thus, the

thermal conductivity of a strip of Type I superconductor below Tc can be switched

by several orders of magnitude by application of an external magnetic field of

greater than Hc. This operating principle is useful as a thermal switch in very low

temperature refrigeration systems that cool samples to some very low temperature,

T< 1 K. In this application, once cooled the sample can be thermally isolated by

switching off the magnetic field and returning the strip to the superconducting state.

Example 2.4

A superconducting switch, consisting of a strip of tin (Tc¼ 3.7 K) surrounded by a

small magnet capable of H>Hc, connects the cold plate of a 3He refrigerator

(T¼ 0.5K) to a sample at the same temperature. Calculate the thermal conductivity

ratio (ks/kn) assuming kn¼ bT and ks¼ ae-(Tc/T) below Tc in the superconducting

state.

To find the ratio of the thermal conductivities, it is not necessary to know the

absolute values. However at Tc, the thermal conductivities of the two states must

be equal: kn(Tc)¼ ks(Tc) or bTc¼ ae�1. This means that b/a¼ 0.1 K�1. Note that

these are not thermal conductivity units, but that is not a problem as again the

goal is a dimensionless result. The important boundary condition is that the ratio

b/a at Tc be unity. At 0.5 K, the ratio of the thermal conductivities is,

knð0:5KÞ
ks 0:5Kð Þ ¼

bT
ae�Tc T=

¼ 0:1K�1 � 0:5K

e�7:2
¼ 67

So the switching ratio of the thermal link is nearly two orders of magnitude.

The critical current Ic is the maximum current that a superconductor can carry in

the zero resistance state. This is generally a function of magnetic field. In the case of

Type I superconductors, Ic is determined by the magnitude and direction of the

magnetic field at the surface of the conductor as compared to Hc (Silsbee’s

hypothesis). In self field,

Ic ¼ 2paHc (2.35)

where a is the radius of the wire. Although Hc is relatively low, Type I super-

conductors can have large currents. For example, a 1 mm radius lead wire at 4.2 K

in its self field can carry in excess of 260 A of resistanceless current. However, since
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Hc is so low, Type I superconductors are not suitable for high field magnets.

For this, fortunately we have Type II superconductors. As seen in the next section,

Ic in Type II superconductors results from an entirely different mechanism having

to do with the details of the microstructure.

Before leaving the subject of Type I superconductivity, it is worth mentioning a

few aspects of the microscopic theory of superconductivity. The complete theory of

superconductivity is based on microscopic interactions between the electrons and

phonons within the lattice, leading to correlated behavior of the electrons, known as

Cooper pairing. The mathematical treatment of this model is quite complex,

requiring a thorough knowledge of advanced quantum mechanics, and is well

beyond the scope of this brief survey. Nevertheless, there are some important

results of the microscopic theory which are helpful in understanding the general

behavior of superconductors.

One major success of the microscopic theory is its ability to predict the

superconducting transition temperature of a metal based on knowledge of the

electron and phonon energy distributions. The electron–phonon interaction which

produces Cooper pairing causes a gap in the density of electron states. This gap

is the origin of the exponential specific heat at low temperatures. The width of

the gap is directly proportional to the superconducting transition temperature. In the

microscopic theory the exact formula is derived for the critical temperature Tc,

Tc ¼ 1:14YD exp
�1

UDðeFÞ
� �

(2.36)

whereYD is the Debye temperature, and D(eF) is the electron density of states a the
Fermi surface. The attractive potential U is due to the electron–phonon interaction

which leads to Cooper pairing of the superconducting electrons. Two interesting

conclusions follow from (2.35). First, metals with high resistances near room

temperature thus possessing large electron–phonon interactions and a high normal

state resistivity, will also be more likely to be superconductors. This result, which is

approximately borne out by experiment, explains why copper is not a superconduc-

tor. Second, metals with even numbers of valence electrons having a smaller D(eF),
since they have fewer free electrons are less likely to be superconductors. Empiri-

cally, it is found that the transition temperatures of superconductors peak with

odd numbers of valence electrons in support of this theoretical conclusion [31, 32].

In its fully developed formalism, the microscopic theory of superconductivity is

considered to be one of the major triumphs of theoretical solid-state physics.

2.5.2 Type II Superconductivity

Most theories of superconductivity introduce a second characteristic length, known

as the coherence length, x. In the microscopic theory, the coherence length is

roughly the size of a Cooper pair, while in macroscopic theory it represents the
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spatial distance over which the superconducting to normal transition occurs.

The coherence length is a strong function of the crystal structure and lattice

imperfections. Superconductors with large values of x> l are Type I, while Type

II superconductivity occurs for those materials where x< l.
The fundamental distinction between Type II and Type I superconductors can be

seen by comparing their magnetic behavior. As we discussed above, in a Type I

superconductor the magnetic flux is totally excluded provided H<Hc(T).
By comparison, in a Type II superconductor penetration of magnetic flux is allowed

under certain circumstances. In an ideal Type II superconductor, the magnetic

penetration is quantized in units of fluxons, f 0¼ h/2e, and forms a regular trian-

gular array, called a fluxon lattice, based on the magnitude of the external field. In

effect, this brings small regions of the superconductor into the normal state. Such

behavior, which is clearly a deviation from the perfectly diamagnetic Meissner

state, is referred to as the mixed state in Type II superconductivity.

Because of flux penetration, the Type II superconductor in the mixed state is no

longer a perfect diamagnet. A typical magnetization curve of a Type II supercon-

ductor is shown in Fig. 2.15. Also indicated is a magnetization curve for the same

material if it were Type I; however in the case of Type II superconductors Hc is only

defined in the thermodynamic sense and does not represent an actual magnetic

transition. In Type II superconductors there are two critical fields. The lower critical

field Hc1 represents the transition from the Meissner state to the mixed state, while

the upper critical field Hc2 marks the maximum field for which any superconduc-

tivity is present. Listed in Table 2.11 are the metallic Type II superconductors that

Fig. 2.15 Typical

magnetization curves for

metal that is either Type I or

Type II superconductor. Note

that for a Type II

superconductor, Hc has only a

thermodynamic definition

Table 2.11 Critical temperature and upper critical field of common Type II superconductors [35]

Material Tc(K) m0Hc2(T)

Nb 9.3 0.29

V 5.4 0.7

NbTi 9.3 13

Nb3 Sn 18 23

V3Ga 15 23

Nb3 Ge 20.5 41
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were known prior to 1986 [32–34]. These materials are sometimes referred to as

low temperature superconductors (LTS) and continue to be the materials of choice

for most large superconducting magnet applications. Note that for these materials,

although the critical temperature is only slightly higher than that of some Type I

superconductors, Hc2 is often orders of magnitude higher than Hc.

The mixed state in a well annealed Type II superconductor has an equilibrium

condition consisting of a uniform fluxon lattice. In such a Type II superconductor,

these flux lines are free to move about within the crystal. If the superconductor is

subjected simultaneously to an external field and transport current, the flux lines

will move under the influence of the Lorentz force, FL¼ J�B, causing dissipation.
This is an undesirable condition leading to a relatively low value of the critical

current Ic. Fortunately, Type II superconductors have been developed that contain

imperfections and crystal defects to pin the individual flux lines and thus restrict

flux flow. Flux pinning by various forms of lattice imperfections is the dominant

mechanism that allows practical superconductors to carry substantial transport

currents in magnetic fields approaching Hc2. It is an interesting feature of super-

conductivity that the best properties in Type I superconductors are achieved with

high purity, defect free metals while Type II superconductors performance

improves by additions of impurities.

For high-field applications there are a limited number of commercially available

superconductors. The two materials that are employed most often in magnets are

NbTi and Nb3Sn. NbTi is a binary alloy of approximately equal weight percent of

each constituent. It has good mechanical properties, is easily processed in a

composite with copper, and has a reasonably high m0Hc2� 15 T and Tc� 10 K.

As a result, NbTi is the preferred superconductor for all magnetic devices with the

exception of those requiring the highest fields, m0H ≳ 10 T. The other common

practical superconductor, Nb3Sn, is an intermetallic compound of the general class

known as the A-15 s. Its mechanical properties are not as good, being very brittle,

but Nb3Sn has superior high-field characteristics, m0Hc2� 28 T and Tc’ 18 K,

making it particularly well suited for very high-field magnetic devices. Both of

these materials can be made with sufficient flux pinning to achieve high critical

current densities. Also, they can be processed into multifilament wire form with

copper providing a reliable product that can be cabled and wound into a wide

variety of magnet designs.

Figure 2.16 shows schematically how the critical current density, Jc [A/mm2],

varies with magnetic field and temperature for NbTi and Nb3Sn. The numerical

values given in this graph are not state of the art, but rather are shown here for

general trends with intrinsic variables. Also shown in the figure are the range of

temperatures obtainable by the two lowest-temperature cryogenic fluids, liquid

helium and liquid hydrogen. For reasonable current densities in high magnetic

fields, it is apparent that low temperature helium provides the only practical coolant

for these materials.

The discovery and rapid development of high temperature superconductors has

introduced new opportunities for applications. This class of materials are distinct

from most LTS because they are non-metals with very poor normal state conduc-

tivity. Their mechanical properties are poor and the superconducting properties are
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more difficult to optimize due to complexities in their reaction heat treatment. Also,

in most cases, these superconductors are layered structures with anisotropic

properties that depend on their orientation with respect to the applied magnetic

field.

Table 2.12 is a list of materials that fall broadly into the class of HTS. Note that

all these materials superconducting properties are Type II. In most cases, m0Hc2

is only approximately known since its value is so high that it is difficult to

measure. These materials are manufactured by different processes than LTS with

the procedures being too complex to discuss in the current review. Production

of HTS wire suitable for applications also depends on material selection.

Fig. 2.16 Upper critical field, temperature, and current density for commercial superconducting

materials NbTi and Nb3Sn [35]

Table 2.12 Critical properties of HTS materials. Two

values of Hc2 indicate anisotropic material property [34]

Superconductor Tc(K) m0Hc2(T)

MgB2 39 16/2.5

LaSrCuO 40 50

YBCO 90 670/120

Bi2Sr2CaCu2O8 90 280/32

Bi2Sr2Ca2Cu3O10 110

TlBaCaCuO10 110

TlBaCaCuO10 125 ~120

HgBa2Ca2Cu3O8 133 ~160
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Some materials, such as the BSCCO based conductors, are produced in a silver

matrix, which provides the needed parallel path for electric current. Other materials

such as YBCO can be formed on a variety of substrate materials.

Overall, HTSmaterials have transition temperatures that are sufficiently high to use

other coolants such as liquid neon or nitrogen or by a closed cycle cryocooler.

However, since the superconducting properties (Jc, Hc2) of thesematerials all improve

with decreasing temperature, some HTS applications are still utilizing helium cooling

all be it at somewhat elevated temperatures. Certainly, HTS applications have

stimulated the development of small scale cryocoolers, a topic discussed in Chap. 8.

The problems of superconducting materials are of great concern to helium

cryogenics. Superconducting materials require helium temperature environments

to achieve their properties, but more importantly, the behavior of superconductive

devices are governed largely by problems of heat transfer, efficient cooling, and

safety. For example, the properties of a superconductor are conducive to carrying

electric current provided the material remains below the local critical temperature

and field. Thermal equilibrium is not always possible so superconductors must

be fabricated in a low-resistance matrix material like copper or aluminum to

provide the current-carrying capacity should the superconductor enter the normal

state. Proper analysis of this problem requires knowledge of the heat transfer

and fluid flow conditions present in the particular magnetic device.

Questions

1. Why does the electrical conductivity of a metal increase while that of a

semiconductor decrease with decreasing temperature?

2. Why do alloys generally have lower thermal conductivity than pure metals?

What does this say about material selection for structural supports in cryogenic

systems?

3. Explain using thermodynamic arguments why the thermal expansion coefficient,

a, of a material goes to zero as absolute zero is approached.

4. Why do materials normally get stronger as the temperature decreases?

5. Calculate the ratio sy/k for beryllium copper and Teflon at 300, 80 and 4 K.

Compare with values in Table 2.8. Comment on their relative usefulness as

structural materials.

Problems

1. Calculate the heat content in a two tonne (2,000 kg) iron magnet at 300 K. How

much liquid nitrogen is required to cool this magnet to 80 K? How much liquid

helium is required to cool this magnet from 80 to 4 K? (Hint: Assume that the

internal energy change is entirely absorbed by the liquid resulting is a mass of

vapor. Use the Debye model to calculate the change in internal energy,YD(Fe)

¼ 460 K; hfg(He@ 4 K)¼ 21 kJ/kg; hfg (N2 @ 80 K¼ 200 kJ/kg)).

2. Calculate the difference between the constant pressure and constant volume

heat capacities of aluminum at 300 K.
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3. Derive an expression for the temperature at which the electron and phonon

contributions to the heat capacity are equal. Of the elements listed in Tables 2.1

and 2.2, which has the highest value of this temperature?

4. The thermal conductivity of 304 stainless steel varies with temperature as k
(T)¼ 1.5 T0.4 [W/m K]. Calculate the total conduction heat transfer for a

10 mm diameter rod, 100 mm in length. One end of the rod is at 80 K and

the other is at 300 K.

5. A Pt resistance thermometer consists of a 1 m long thin wire of pure annealed

platnium. Calculate the diameter of the wire based on the requirement that the

power dissipation not exceed 0.1 mW at room temperature and the current

be less than 10 mA. What is the sensitivity of this sensor, dR/dT?
6. Derive (2.34) starting with the Gibbs free energy change and the empirical form

for the critical field of a Type I superconductor,

Hc ¼ H0 1� T

Tc

� �2
" #

a. Adiabatic magnetization is the constant entropy application of the magnetic

field that brings the superconductor into the normal state. Derive an expres-

sion for the final temperature Tf as a function of H0, Tc and Ti.
b. Choose aType I superconductor and calculate the value ofDTmax, themaximum

value for the temperature difference occurring from adiabatic magnetization.

Hint: You may assume that the normal state specific heat Cn¼ gT and neglect

the phonon heat capacity.

7. Thermal conductivity of copper

a. Determine the mean free path in a copper sample with a residual resistivity

ratio, RRR¼ 50 for temperatures below 10 K. Use the following values for

copper: Fermi velocity vF¼ 1.57� 106 m/s and the electron concentration

n¼ 8.45� 1028 m�3.

b. Estimate the thermal conductivity of the same copper at 2 K.

8. The maximum electrical current that can be carried by a Type I superconductor

wire is limited to the current that produces the critical field Hc at the conductor

surface (Silsbee’s Law).

a. Derive an expression for the critical current of a cylindrical superconducting

wire of radius R as a function of temperature.

b. How much current can a 1 mm diameter indium wire carry at 1.8 K? [Hint:

Use Ampere’s Law to determine themagnetic field at the surface of the wire.]

9. A normal metal wire carrying an electrical current will produce heat, raising the

temperature of the wire. Estimate the time required for a copper wire carrying a

current density of 100 A/mm2 to heat up from 4.2 to 300 K if it is thermally
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insulated from the environment. Assume Cp¼Cv and use approximations for

both the resistivity and the specific heat as functions of temperature.

10. A sample of wire is made by codrawing a copper tube over an aluminum rod. The

aluminum has a cross-sectional area A1 and the copper A2. The wire is stress free

at ambient temperature, T¼ 293 K. Derive a relationship for the stress in either

component of the wire as a function of A1, A2, and material properties when the

wire is cooled to 4.2 K. For equal cross-sectional areas (A1¼A2), calculate the

stress in the copper and compare it with the yield of annealed OFHC copper.

11. A temperature sensor located at 4.2 K requires four Manganin instrument leads

to 300 K. The length of the wires is 1 m and the sensor operating current

(for two of the leads) is I¼ 10 mA. Calculate the required wire diameter such

that the thermal conduction heat load is equal to the Joule heat (I2R) when the

two leads are energized.

12. Consider a material that has a thermal conductivity varying with temperature as

k¼ bT2 and a constant thermal contraction coefficient, a. Derive a relationship
for the overall change in length of a rod of initial length L as a function of

the temperature difference between the two ends of the rod. Show the result

for the special case where the low temperature end is at 0 K. Compare the

answer to that for k¼ constant.

13. Same as Problem 12 except let the thermal conductivity be a linear function of

temperature, k¼ bT.
14. Calculate the Lorentz ratio (L¼ kr/T) for one of the materials in Tables 2.4 and

2.5. Compare to the free electron value, L0.
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