Physics G6038: Prob Set 4 Feb. 29

- 4.1 In problem 2.2e you showed that the character of the 2j + 1 irreducible representation $D^{j}(\vec{\phi})$ of the rotation group was $\chi^{j}(\phi) = \text{Tr}D^{j}(\vec{\phi}) = \sum_{m=-j}^{j} e^{-im\phi} = (e^{-ij\phi} - e^{i(j+1)\phi})/(1 - e^{i\phi})$ using the invariance of the trace to similarity transformations and the diagonal form of $e^{-i\phi J_z}$ in the $|jm\rangle$ basis. Consider now the direct product representation $D^{j_1 \otimes j_2} = D^{j_1} \otimes D^{j_2}$ with $j_1 \geq j_2$.
 - a) Compute the character of the direct product representation.
 - b) Derive the Clebsh-Gordan decomposition

$$\chi^{j_1 \otimes j_2} = \chi^{j_1 + j_2} + \dots + \chi^{j_1 - j_2}$$

using only the characters of the known irreducible reps.

- 4.2 Three quarks with spin 1/2 and flavors u,d,s are coupled to form states $|J, m, S\rangle_c$, where $\vec{J} = \vec{S}_1 + \vec{S}_2 + \vec{S}_3$ is the total spin and $\vec{S} = \vec{S}_1 + \vec{S}_2$ is the spin of the *ud* diquark system.
 - a) What is the range of allowed J and S?

b) Construct the normalized state $|3/2, 1/2, 1\rangle_c$ in terms of the uncoupled basis $|m_u m_d m_s\rangle$.

c) Construct the normalized $|1/2, 1/2, 1\rangle_c$ and $|1/2, 1/2, 0\rangle_c$ states. (Hint: apply projection operators for fixed J^2 and S^2 to suitable states)

4.3 For a proton of spin $\frac{1}{2}$, the *s* quark above is replaced by a *u* quark. Because the color wavefunction is assumed to be totally antisymmetric (recall why we assume this because of the $\Delta^{++}(1236)$ resonance), the total space, flavor and spin wavefunction of the quarks must be symmetric under the interchange of any two quarks.

a) Expand the proton with spin projection +1/2 wavefunction as a linear combination of states such as $|u\uparrow, u\downarrow, d\uparrow\rangle$.

b) Assuming $m_u = m_d = m_p/3$ is the mass of the constituent quarks and their charge is $e_u = 2e/3$, $e_d = -e/3$, compute in (ev/gauss) the magnetic moment the proton $\mu = \sum_i g_i e_i/(2m_i c)S_{zi}$. Assume $g_i = 2$. Compare to the observed magnetic moment.

4.4 An irreducible tensor operator T_q^k of order k transforms under rotations as $U(R)T_q^kU(R^{-1}) = \sum_{q'=-k}^k T_{q'}^k D_{q'q}^k(R)$ where $U(R) = e^{-i\vec{\phi}\cdot\vec{J}}$ and $D^k(R)$ is a 2k+1 dimensional irreducible representation of the rotation group.

a) Derive from above the required commutation relations between T_q^k and the generators J_{\pm}, J_z .

b) If **A** and **B** are two vector operators, prove that the scalar product $\mathbf{A} \cdot \mathbf{B} = -A_1^1 B_{-1}^1 - A_{-1}^1 B_1^1 + A_0^1 B_0^1$ is rotation invariant.

c) Construct the five components of the quadrapole tensor T_q^2 constructed out of vector operator components V_x, V_y, V_z , (e.g. $T_2^2 \propto (V_x + iV_y)^2$)

d) Show that the nine component Cartesian (direct product) tensor $T_{ij} = V_i U_j$ can be decomposed into a sum of irreducible Cartesian tensors

$$T_{ij} = \frac{1}{3}(\vec{V} \cdot \vec{U})\delta_{ij} + \frac{1}{2}\epsilon_{ijk}(\vec{V} \times \vec{U})_k + (\frac{1}{2}(V_iU_j + V_jU_i) - \frac{1}{3}(\vec{V} \cdot \vec{U})\delta_{ij})$$

where the first term transforms as a scalar and the second as (axial) vector. Show that the five components of the third term transform among themselves under rotations. Construct irreducible spherical tensors via $T_m^1 = \sum_{q,p} U_q^1 V_p^1 \langle 11qp | 11jm \rangle$, to show that

$$T_{0}^{0} = -(\vec{U} \cdot \vec{V})/\sqrt{3}$$

$$T_{\pm 1}^{1} = \frac{i}{\sqrt{2}} (\mp 1)((\vec{U} \times \vec{V})_{x} \pm i(\vec{U} \times \vec{V})_{y})/\sqrt{2} , \quad T_{0}^{1} = \frac{i}{\sqrt{2}}(\vec{U} \times \vec{V})_{z}$$

$$T_{0}^{2} = (3U_{z}V_{z} - \vec{U} \cdot \vec{V})/\sqrt{6}$$
(1)

4.5 The nuclear potential between a proton and neutron has a tensor component due to pion exchange: $V_T = f(r)S_{12}$, where

$$S_{12} = 2(3\frac{(\vec{S} \cdot \vec{r})^2}{r^2} - S^2)$$

and $\vec{S} = \vec{s}_p + \vec{s}_n$ is the total spin and \vec{r} is the relative coordinate. Show that $S_{12} = (24\pi/5)^{\frac{1}{2}} \mathbf{S}^{(2)} \cdot \mathbf{Y}^{(2)}$ in terms of the irreducible quadrapole tensors $\mathbf{S}_m^{(2)}$ formed out of the S_i and $\mathbf{Y}_m^{(2)} \equiv Y_{2m}(\hat{r})$.