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1 Welcome to the solid state electrical conductivity lab!

The electrical conductivity (σ) defines the response of a system to an applied electric field.
The conductivity measures the tendency of electrical charges to move through the solid be-
cause of the field. This of course is the empirical property that makes metals metallic and
insulators insulate, depending on the values that it takes. It would be hard to overstate its
technological significance. In this lab, you’ll be simultaneously learning about the conduc-
tivities of various materials, while using some of those facts to measure temperature–and
enable more measurements.

In practice, one extracts information about the DC electrical conductivity from the
resistivity (ρ), which is the inverse of the electrical conductivity (ρ = 1/σ). For the pur-
poses of this lab, you can begin thinking of the resistivity as a shape-independent, bulk
property belonging to a kind of material. The approximate separation of bulk properties
from geometric specifics is what allows people to make differently rated resistors from the
same roll of wire.

You will find that the first thing you’ll actually have to do is to calibrate a couple
of commercial diodes for low temperature thermometry; but after that, you can measure
whatever you want, subject to availability.

2 Techniques You Will Be Using

2.1 The 4-Wire Technique and Alternation

A voltmeter doesn’t know what it’s connected to. If you were to measure the voltage across
the sample using the same leads with which you applied the probing current, you would
also measure the voltage drop through the current leads. Since the leads are long and the
sample resistance may be small, this can be a very significant source of measurement error.
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The simplest solution to this problem is to apply the current with one pair of wires, and
measure the voltage with a second pair.

Sample

Current Current

Voltage Voltage

To meters To meters

Figure 1: Four-Wire Schematic.

Another source of extraneous voltage is the Seebeck effect due to the thermal gradient
down the voltage leads. Warm electrons diffuse faster down the wire, leading to a voltage
proportional to the temperature difference. This material-dependent effect is the basis
for the thermocouple thermometer, but for conductors (with small voltage signals) it’s a
nuisance because inevitable asymmetries in the lead wires will lead to a voltage offset. The
solution to this problem is to alternate the direction of the applied current. In the average
of the two measured voltages, this and other asymmetries cancel out.

The Keithley current source and voltmeter can be set up to alternate in what Keithley
calls“Delta mode” (more information is in the Keithley manual). You can initiate these
measurements either from the Keithley front panels, or from the scripts we have set up for
you in Matlab (see the Matlab Script Notes). However for measurements of diodes and
other intrinsically asymmetric devices, you should use the Keithley in DC mode.

2.2 Refrigeration

To get samples down to low temperatures, you have the use of a closed-cycle helium refrig-
erator. Compared to the cryostats used in the other low temperature labs, this system is
more like a refrigerator in the sense of a kitchen refrigerator, with a compression/expansion
cycle of a refrigerant fluid. The important details of how to operate this rather complicated
bit of machinery are discussed in the CTI Refrigerator Manual. However, if everything
is working properly, the instructions on Cooling Down should suffice.
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For now, note that the refrigerator comes in two parts, connected by pressurized he-
lium hoses. The big box contains a large pre-compressor; the heavy object to which these
leads go is called the cold head. It is so clunky because it contains a motor that drives
heat-exchanging fluid displacers back and forth. Once it’s been wired up, the sample to
be measured is thermally anchored to the coldest part of the cold head–the tip of the
cold finger. The thermometer that you calibrated put into good thermal contact with the
sample. Note that all of the lead wires are thermally anchored all the way down the cold
finger to prevent unmitigated thermal conduction from the feedthrough plugs to the sample.

Next, two heat shields are placed around the sample. These fairly isothermal surfaces
both slow radiative heating from the tip of the cold finger and ensure that the environ-
ment around the sample is at a constant temperature. Finally comes the outer tail, which
pressure-seals around the shielded cold finger. Once this is done, a vane pump gets most
of the atmosphere out of the sealed-off space (otherwise the remnant vapor pressure of the
eventually frozen air would leak heat to the sample). At this point, with everything canned
up and evacuated, you are ready to start the refrigerator.

Unburdened with a heat load, the refrigerator is meant to cool the tip of the cold finger
down to around 10K over 60−90 minutes. Once your sample has reached base temperature,
you can heat it by using the heater control on the Lakeshore thermometer box. This puts
current through a stretch of NiCr wire in thermal contact with the sample holder. The
Lakeshore box uses a Proportional-Integral-Derivative (PID) feedback algorithm, driving
the thermal mass of the thermometer like a damped harmonic oscillator to establish the
appropriate current through the heater coil.

3 Temperature Measurement

Well and good: but how to establish what the temperature is? What’s required is a well-
characterized and repeatable measurement that overlaps a trusted temperature scale at
the high end, but persists to lower temperatures–or is simply more convenient.

Over a wide range of temperatures helium provides a decent thermodynamic tempera-
ture standard. Down to about 30 K, platinum has a very linear resistivity, and to measure
the resistance of a twist of Pt wire is certainly more convenient than using a gas bulb. The
usual choice for creating a continuous calibration curve for Pt resistors is the phenomeno-
logical Callendar-Van Dusen function:

R(T ) = R0(1 +AT +BT 2 + C(T − 100)T 3).

Here the term with C is applied only for T < 0◦ centigrade. This equation has four
parameters, which you can determine for a particular bit of wire by comparing the measured
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Figure 2: Rig Block Diagram.

resistances at fixed points, determined by phase transitions. Two obvious fixed points
are the temperature of water in equilibrium with ice, and the temperature of water in
equilibrium with vapor, at a well-defined pressure. But since thermometers based on this
scale are common, you could establish the first three Callendar-VanDusen constants by
measuring the resistance of your Pt in equilibrium with a mercury expansion thermometer
at at least three different temperatures. The last constant requires a measurement at low
temperature. A convenient fixed point here is the temperature of boiling liquid nitrogen
at (approximately) one atmosphere, which is about 77 K.

3.1 Diode Thermometry

Below 30 K, the resistivity of a platinum sample becomes noticeably less linear and drops
away as phonons freeze out. On the other hand, the resistivity of a semiconductor diode
increases as thermally excited carriers freeze out. Hence, just where platinum thermometers
become useless, the appropriate semiconductor thermometer becomes more sensitive. In
principle, one calibrates the temperature/voltage function of the diode using a gas bulb
thermometer, or against a previously calibrated Pt resistor–but many diode thermometers
remain sensitive below the condensation temperature of He (about 4.2 K).

Your refrigerator currently has two diode thermometers installed. These are fairly stan-
dardized and almost prefectly interchangeable. Nevertheless, it’s a good idea to recalibrate
them before taking data.
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4 Microscopic Models of Electrical Conductivity

4.1 The Drude Model

The standard classical mechanical model for the conductivity/resistivity of solid materials
is called the Drude model. In the DC version of this model, which should be familiar
from your introductory physics courses, the electron is treated like a little charged ball,
bouncing along through the material under the influence of an accelerating electric field.
After every bounce, the velocity is reset to some random value consistent with the temper-
ature of the lattice. Unless there is something to stop the electrons–some sort of boundary
or tether–they will tend to rattle on their way forever, with a bias in the direction of
the electric field. So in the absence of an explicit binding force, this DC model describes
a metallic conductor. The presence of a binding force implies electrical insulating behavior.

Figure 3: The Drude picture of a metal. Electrons are tiny, charged pinballs rattling past
obstacles in the general direction of the applied field.

For AC voltages, the distinction between conductors and insulators is muddied, because
AC currents in metals go back and forth anyway. Nevertheless, one expects a qualitative
difference based on the notion that bound, oscillating electons should have a resonance
frequency (corresponding to the “spring constant” of their tether). So one can generally
define a metal in the Drude model as a material for which at least one “resonance” occurs
at zero frequency: at least one “spring constant” is set to zero.

It’s pretty simple to derive the full AC-DC Drude model for conductivity. To start,
assume that a single charge carrier (mass m and charge q) is accelerated under the influence
of an electric field with a form E(t) = E0 cosωt, while it is also subject to a restoring force
kx (x is the displacement from equilibrium) and a dissipative force fv (v is the velocity).
Solve the Newtonian equation to find the amplitude and maximal speed of the steady-state
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solution. One slick way to do this is to imagine the complex field E(t) = E0e
iωt and take

the real part at the end of the calculation. This works because the differential equation
is linear. Next note that the classical expression for the electrical current density j is just
j = nq < v >, where n is the number density of the charges, and the brackets indicate a
sample average. Plugging in your expression for v, you’ll get

(t) =
nq2 × iωE0

k −mω2 + i < f > ω
× eiωt.

The proportionality between j and E is the frequency-dependent conductivity (σ(ω)
for the frequency ω). If you rationalize the denominator and take the real part of your
answer, you will find that it falls into two pieces: one part of the current is in phase with
the electric field (goes like cos(ωt)) and the other is π/2 out of phase (goes like sin(ωt)).
What does this mean?

jE has the units of a power density. Over a cycle, the out-of-phase product sin cos av-
erages to zero, but the in-phase cos2 averages to 1

2 . This nonzero part is the cycle-averaged
power transmitted to the current. Where does it go? Its proportionality to < f > is an
important hint. Recall that f represented a damping force on a single oscillating charge.
What we have described here is a steady state: the kinetic energy of the current is dis-
sipated by the frictional force. By contrast, the out-of-phase part determines the energy
flow into and out of the electromagnetic fields with no net absorption.

Because we initially assumed k 6= 0, we have described a DC insulator. However the
same analysis goes through with k = 0, so the expression for the DC conductivity for
conductors is just the k = 0 limit of the general expression. This leads to another familiar
interpretation of the averaged dissipation coefficient < f >. Given that the additional
velocity of a charge accelerated in a DC field E for time τ should be qEτ/m, the current
density should be nq2Eτ/m. Comparing the two expressions for the DC current density
shows that < f >= m/τ . In other words, m/ < f > is the average time for the uniform
acceleration of an electron by the external field, before the electron hits some obstacle and
decays out of the current.

4.2 “Perfect Conductors”

Things get a bit subtle when we try to imagine what would happen for a perfect DC con-
ductor (k = 0 and < f >= 0 simultaneously). Imagine a sequence of graphs of the in-phase
part of the conductivity as τ → ∞ and < f >→ 0. The typical Lorentzian narrows, and
the peak at ω = 0 simultaneously increases, in such a way that the total area under the
curve remains constant. If we rescale the ordinate, we get closer and closer to what seems
a perfectly thin spike at ω = 0. This < f >→ 0 limit is a Dirac δ-function. For a perfect
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conductor, with no dissipation, the in-phase conductivity happens at zero frequency. Be-
cause τ represents the amount of time for which an electron retains the energy that the
field gives it, and (for constant m) < f >→ 0 makes τ → ∞, a perfect conductor would
be a great place to store kinetic energy, transmit energy without loss, etc. If only life were
that easy!

1.0

Figure 4: The in-phase part of σ(ω) for a metal (k = 0) as < f >→ 0 (τ →∞).

4.3 Temperature dependences of the Scattering

4.4 Impurity Scattering in Metals

The idea of perfect metallic conductivity is no relic of the Drude model. The quantum
mechanical treatment of the electron states in a lattice also implies that a single electron
need not scatter out of its eigenstate. So why do metals exhibit finite τs? There are many
mechanisms to consider. The simplest to imagine is impurity scattering. An electric field
gives a directed momentum to a conduction electron; the scattering centers mix up mo-
menta. Hence if impurity scattering were the only scattering process, one would expect a
mean free path of about the average impurity spacing, and a corresponding impurity scat-
tering resistivity that could be made as low as one wished by careful materials processing.

To be specific, consider the following ballistic model for impurity scattering. Call
the density of impurities Ni. Define the mean free path, L, as the length for which a
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charge carrier on average hits one impurity. Actually, it’s easier to imagine the impurities
sweeping toward the charge carrier. Supposing that the radius of one impurity is ri, then
L × πr2

iNi ∼ 1. But L = vτ , where v now stands for the average speed. So τ ∼ 1
vNi

. All
else being constant, Ni → 0 implies τ →∞.

For a fixed Ni, we might expect to be able to understand temperature dependence
from the variation of v. If, as you might expect for a classical gas, v were something like√
kBT/m (with kBT >> Eτ) then you might expect the impurity resistance to increase

with temperature.

In fact the proper speed to use at all temperatures for which the metal is solid is the
Fermi speed, vF , which for classical particles would correspond to a temperature on the
order of 104 to 105 K. The fact that in metals the impurity resistivity is largely independent
of temperature is a consequence of the fact that electrons do not obey classical statistics.

If τ ∼ 1
vFNi

, then you can estimate vF in a crystal of a metal by introducing a controlled
density of impurities. As an exercise, see if you can work out the details of how you would
extract vF from a data set of ρ versus Ni.

4.5 Carrier Freezeout in Semiconductors

In nonmetals, the freeing of a charge requires an activation energy. As the temperature
increases, one expects a population of thermally excited carriers. Recall that the Drude-

model conductivity σ = nq2τ
m . The number of electrons at energy ε follows the Fermi

distribution n(ε) = 1
eε/kBT+1

. In a semiconductor ε includes the band gap ∆. Typically,

∆ ∼ 1eV (1.6×10−19J). Hence for T << ∆/kB ∼ 104 K, eε/kBT >> 1. In other words, the
activated electrons in a semiconductor approximate a Maxwell-Boltzmann gas. Inserting
the density of states factor ε1/2dε, we calculate for the total number of free carriers at
temperature T ,

n ∝
∫ ∞

∆
e−ε/kBT ε1/2dε ∝ T 3/2e−∆/kBT .

The calculation of the scattering time is a bit more complicated than it is for conductors.
Here is one way to grasp the main result. For a Maxwell-Boltzmann gas, the thermal
wavelength corresponding to kinetic energy 1

2kBT of each quantum mechanical particle (of
mass m) is

λT =

√
h̄2

2mkBT
.
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This defines a thermal volume VT per particle of λ3
T ∼ (kBT )−3/2. Now NiVT will be

the number of scatterers in the same volume, so you would expect that for the impurity
scattering rate, 1/τ ∝ (kBT )−3/2, and τ ∝ (kBT )3/2.

The reason the analysis of the scattering time for semiconductors differs from that in
metals is that for metals, the charge density n is much larger (on the order of one elec-
tron per unit cell) and basically independent of T . Maxwell-Boltzmann statistics are no
longer a good approximation. So for metals, the appropriate temperature to use for the
“thermal wavelength” would be the Fermi temperature TF (typically TF ∼ 104K), which is
proportional to n2/3. In other words, the average spread of the charge carrier wavepackets
is metals about a lattice constant–much smaller than the typical impurity spacing–and so
in metals the ballistic approach works better.

So for semiconductors, we’d expect σ ∝ T 3e−∆/kBT .

4.6 Phonon Scattering in Metals

Even a perfect atomic lattice will support normal modes, known as phonons, which cause
local variations in the density that act as scattering centers. So the average density–of
these density variations–should also limit the mean free path and contribute to the re-
sistivity. Electrons will scatter from other electrons. As long as there is something from
which to scatter, and an open state for the electron to go into (recall that electrons are
Fermi particles) our Drude-model currents, once set up, will eventually decay.

Faced with the multiplicity of scattering mechanisms, you might not be surprised that
the general computation of the electrical resistivity of a metal can turn into a very compli-
cated undertaking. The total scattering rate should be something like the sum of all the
different rates taken individually. That is, 1

τtotal
= 1

τimpurity
+ 1

τphonon
+ . . .. In other words,

all else being constant, the various resistivities of the material should add like resistors in
series. There is some hope of disentangling the major contributions because each mecha-
nism has a characteristic temperature dependence.

To understand the temperature dependence of phonon scattering, you must consider
again the totality of electron states in momentum space. You must also have a notion of
the spectrum of phonon states.

As you add electrons to a system, Fermi exclusion forces the newer electrons into higher
and higher momentum states. For a completely isotropic material, you’d end up with a ball
of momentum states, filled out to the Fermi wavevector kF . The elastic scattering of an
electron at this Fermi Surface from a phonon of wavevector q leads to a loss of momentum
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Figure 5: Cartoon of a particular phonon on a centered square lattice. The blue atoms are
displaced from their equilibrium lattice positions.

(as measured from the current direction)

∆k = kF (1− cos θ)

and this loss can be averaged over the Fermi surface:

< ∆k >Surface= 2πk2
F

∫ θMax

0
n(θ)(1− cos θ)sinθdθ.

The scattering rate out of a current is really a rate of momentum loss, so 1
τ ∝< ∆k >.

Ky

Kx

Fermi Surface
State

Figure 6: Fermi Sphere. The idea is that each state owns a particular volume of wavevector
space, so they must stack up in energy.

n(θ) is the number density of phonons available for scattering (and corresponds to Ni

in the previous section). Since phonons are Bose particles, their occupation number as a
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Figure 7: Electrons scattering from phonons (point particle picture). The lattice ions in
blue are displaced from their equilibrium positions. Electrons (tiny green dots) are drawn
to regions of temporarily higher positive charge density.

function of temperature is

nq ∼
1

eEq/kBT − 1
∼ kBT/Eq

with the last expression as a very crude approximation for phonons of energy E(q) and
momentum q.

KfKf
Fermi Surface

q

Figure 8: Phonon scattering cartoon (momentum space version). Here q is the phonon
wavevector and the initial and final electron states are taken to be on the Fermi surface.

At low temperatures, the distribution limits scattering to sin(θ/2) < q/2kF . So the
question is: what’s the typical q at a temperature T? The answer is simple if we use the
Debye model for the phonon spectrum. In the Debye model, the energy of a phonon of
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wavevector q is just cq, where c is the speed of sound in the crystal. The sound modes
have a natural largest wavevector qD (“D” for Debye) corresponding to the dimensions of
a cell of the crystal, with a largest energy ED = cqD. By dividing ED/kB, we convert ED
to the Debye temperature, ΘD. So to find the typical qT at typical energy kBT , we find its
wavevector as a fraction of qD: qT = qD(T/ΘD).

Now in metals, typical Debye wavevectors are much smaller than typical Fermi wavevec-
tors, so we can approximate qD/kF ∼ θ. Retaining the crude approximation that the
number of phonons is proportional to T , you can calculate:

< ∆k >Surface= 2πk2
FT

∫ T/ΘD×qD/kF

0
(1− cos θ)sinθdθ ∼ T 5.

At high temperatures, the upper limit of the integral saturates at qD/kF , so the tem-
perature dependence for T > ΘD will be linear. A more careful calculation along the same
lines yields the Bloch-Gruniesen formula

1

τ
= vFσa

h̄2q2
DkB

Mak2
BΘD

(
T

ΘD

)5 ∫ ΘD/T

0

4z5dz

(ez − 1)(1− e−z)
.

In this formula, σa is the cross section for scattering from a single atom of the lattice. For
more on Bloch-Gruneisen and its brethren, see the Conductivity Theory References,
especially the Approximation of the BG Transport Integral, which is useful for ac-
tually fitting data.

Considering both phonon and impurity scattering together, you would expect the DC
resistivity of a metal to increase as a function of temperature, and at low temperature
decrease to a finite value. In terms of the Drude parameters, for metals, n is a constant.
Likewise τimpurity is constant, but τphonon changes. By fitting the ρ versus T data for a
metal, you can estimate the experimental quantities, ΘD, n, τimpurity, and the jumble of
other constants that determines the overall scale for τphonon.

4.7 Superconductivity

While the idea of perfect metallic conductivity is understandable within the context of
the Drude model for independent electrons, superconductivity (which by contrast is an
actually attainable state) is not. While normal currents in a metal decay by scattering,
for supercurrents there is an energy gap–analogous to the band-gap that makes insulators
work–which means that scattering itself requires energetic activation. Hence materials in
the superconducting state are qualitatively different from merely excellent regular conduc-
tors.
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Figure 9: Resistance of a platinum wire at low temperatures, showing the effects of phonon
freezeout. The scatter at higher temperatures results from time-dependent temperature
gradients across the sample. With more patience, these damp away.
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Figure 10: This ledge in the resistance indicates the onset of the SC transition to zero
resistance. The sample was cut from Nb wire purchased from a jewelry supplier on an
online auction site. The low temperature limit of the apparatus prevents you from seeing
the full transition.
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How does an energy-gapped state arise in a condutor, where the Drude electrons are
“untethered?” In one fairly well-understood class of superconductors (Bardeen-Cooper-
Schreiffer or BCS-type), the motions of the electrons become coordinated by sharing the
energy benefit of lattice deformations. The overlap of the coordinated electron wavefunc-
tions leads to a bulk coherent state, a quantum mechanical phenomenon, which is ener-
getically favorable below the superconducting transition temperature TSC . The electronic
correlations themselves create a new “moving tether” between paired charges. But since all
of the electrons are identical, they are all tethered into the same (macroscopic) quantum
state.

Superconductors are therefore qualitatively different from “perfect” conductors where
we picture each Drude electron moving on its own. The difference is especially apparent
in a superconductor’s response to an applied magnetic field. First consider the theoretical
response of a perfect metal to a changing magnetic field. According to Faraday’s law of in-
duction, the changing magnetic field would induce current loops that oppose the change in
the field. Hence the field in a perfect conductor would be stuck at its initial value. On the
other hand, a superconductor tends either to expel (type I) or sequester (type II) magnetic
field lines so that most of the sample volume is free of magnetic field. A superconductor
spontaneously generates electric currents that keep magnetic fields from the bulk of the
sample.

Here’s a rough sketch of how this large diamagnetic response, known as the Meissner
effect, comes about. So we don’t have to worry about boundary effects, consider an in-
finitely long, thick slab of superconductor. It is always tempting to think of electrons like
little balls of charge, with velocity ~v, such that ~j = ne < ~v >. But to construct a localized
particle out of waves requires a particular sum of momentum states. Superconductivity
depends explicitly on the correlated multi-electron wavefunction, and this single-particle
picture breaks down: the momentum states are added up in a very different way. Because
of the energy gap between this ground state and the single-particle-like excitations, the
applied vector potential can’t change the shape of the wavefunction by much.

It seems paradoxical that current can both flow and not flow in the “ground” state,
depending on whether we are applying a magnetic field. The resolution to this paradox
resides in the difference between the < m~v >-momentum of a localized particle and the
canonical momentum −ih̄∇ in the Hamiltonian. In the presence of a vector potential ~A,
the operator for m~v is modified from −ih̄∇ to −ih̄∇ − e ~A/c). Since the ∇ operator de-
scribes the shape of the wavefunction in space–which can’t change because of the energy
gap–the expectation value of current < ne~v > must be proportional to < −ne2 ~A/mc >.
So the vector potential acts as a direct push on the totality of “particles” that comprise the
superconducting state, resulting in something like a Galilean translation of a rigid solid.
By applying the appropriate Maxwell’s equations, you will find that this supercurrent ex-
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ponentially screens out a magnetic field. For more about the superconducting state, see
the Superconductivity References.

Superconductivity was first discovered in solid mercury by Heike Kammerleigh Onnes
in 1911, soon after he had succeeded in the liquefaction of helium. Superconducting wires
with the ability to carry large currents are used in the production of the very strong
cryogenic electromagnets used in diagnostic NMR machines. In the 1980’s, Bednorz and
Muller discovered superconductivity at the relatively high temperature of 35 K in a layered
copper-oxide. As part of this lab, you have the opportunity to make (or, if time doesn’t
permit, at least measure) a similarly structured compound that becomes supercondcuting
anywhere from 70−90 K, depending on the details of how you produce it (see the notes for
Making BSCCO). Although the recipe for making this material is well known, there is
as yet no consensus about the interaction which makes its superconducting transition occur.
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