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1 What is NMR?

Nuclear Magnetic Resonance is a form of spectroscopy, using radio frequency light, to
both induce and detect transitions involving the orientation of the nuclear spin in an
applied magnetic field. Subtle but systematic variations in the nuclear magnetic reso-
nance frequencies yield information about the chemical environment of the nucleus, as
well as the internal structure of the nucleus itself.

There are two basic forms of the NMR experiment. The older form, which might
be thought of as the “proof of concept” for NMR, is to put a sample in a strong DC
magnetic field, and continuously apply radio frequency (RF) power at the frequency cor-
responding to the energy level splitting. When the RF signal is properly tuned to this
resonance, large numbers of nuclei in the sample are able to absorb quanta of energy–so
one can find the energy level splitting by tuning up the RF and looking for a peak at
the power transmitted to the sample. This method is called CW (Constant Wave) or
LF (Longitudinal Field) NMR.

The LF method has the drawback of being single channel. One might try applying a
band of RF frequencies at once, and detecting power absorptions in a multichannel way,
but in fact there is an easier way to look at multiple frequency responses using Fourier
transforms.

A given nucleus in a given magnetic environment will precess about the local mag-
netic field at the Larmor frequency equal to the splitting between the energy levels. If
there are two nuclei with different energy levels, they will precess at different frequencies.
All you need to do to get precession of both at once is to point the nuclei perpendicular
to the external magnetic field. Enough nuclei of the same type precessing together will
generate an oscillating magnetic signal, that can be detected via the Faraday emf in a
surrounding pickup coil. The Fourier transform of the total signal will exhibit peaks
at the most populated frequencies. This is the TF (Transverse Field) or Pulsed-NMR
method. Nowadays, most NMR experiments are TF.
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One complication is that, if all of the nuclei start out unpolarized (that is, equal
numbers of nuclei pointing in opposite directions), the TF NMR signal will vanish. For
in this case, just at the moment that some precessing nuclei are increasing the magnetic
flux in the pickup coil , an equal number will be turning the same amount of flux out,
giving zero net change. In most samples, at most temperatures, the polarization in the
earth’s field is almost zero, because the energy level splittings tend to be small.

There are two ways to boost signal, and our experiment uses both of them. The first
is to use huge amounts of sample: a small fractional difference in a large population will
give a large signal in absolute terms. The second is to polarize the sample with a pulse
of stronger magnetic field before allowing the spins to precess.

So the most basic sequence of the TF experiment is:

• Polarize the sample perpendicular to the precession field.

• Allow the sample to precess, picking up the oscillating Faraday emf.

• Fourier transform the resulting signal, to reveal energy level splittings.

There are many pieces, both theoretical and experimental, that you can explore with
this apparatus. What follows is a summary of some of the more important concepts.

2 The Larmor Frequency

In classical elctromagnetism, a current loop (current I, area ~A) creates a magnetic
moment ~µ = I ~A. In an external magnetic field ~B, this moment is subject to a torque,

~τ = ~µ× ~B.

This interaction leads to a potential energy

U = −~µ · ~B,

so that ~µ tends to align with ~B.

The nuclei of many atoms, and of hydrogen in particular, carry a magnetic moment
that is proportional to the nuclear spin angular momentum. So left at some arbitrary
orientation in a magnetic field, the spin angular momentum will precess around the
magnetic field according to the usual torque equation

d ~J

dt
= ~τ = ~µ× ~B.

The component of ~J perpendicular ~B describes a circle of radius J sin θ, while the compo-
nent of ~J parallel to ~B remains constant. That is, ~J spins around in the surface of a cone.
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Look at the torque equtions for Jx and Jy:

dJx
dt

=
q

2m
JyB,

dJy
dt

= − q

2m
JxB.

These imply
d2Jx
dt2

= −Jx(
q

2m
B)2,

d2Jy
dt2

= −Jy(
q

2m
B)2.

In other words, the angular momentum vector precesses with a characteristic Larmor
frequency ωL = q/2mB:

Jx = J sin θ cosωLt,

Jy = J sin θ sinωLt.

Quantum mechanically, we expect angular momentum states spaced by h̄, a quantum
of angular momentum. The difference in energy between neighboring states is

∆E = ωLh̄.

So you might say that precession at ωL is the classical analogue which derives from the
spacing of energy levels. In fact, the explicit solution of the spin- and angular momen-
tum Hamiltonian in a magnetic field implies just that. Assume that the external field is
along the z direction. For a particle initially polarized along the +x direction, the prob-
ability of finding it in the ±x direction varies sinusoidally with the Larmor frequency.
(However, note that ωL for a classical magnetic moment seems to be half of the energy
difference between the extremes of the up (↑) and down (↓) states. Where’s the third
state?)

2.1 The Scale of the Phenomenon

For free electrons in a 1 Gauss field, ωL ≈ 2π × 1.4 × 106 Hz. This doesn’t mean that
you will see precession in every current loop. For example, consider a 1cm diameter
loop of copper wire 1mm2 thick. For a nominal electron density 1030, there will be
π× 1022 electrons available to conduct current. For I measured in Amperes, the orbital
frequency (drift speed)/circumference will be I/(1030×1.6×10−19) ≈ I×6.3×10−10Hz.
So for reasonable currents, the electrons inside the macroscopic wire would be bounc-
ing against the inside of their wire about 1013–1015 times in a single orbit. All of those
tiny, quick collisions with the much more massive wire loop would average out to nothing.

For a single electron orbiting a single proton at a radius of about 10−10m, the classical
speed is 1.6× 106m/s, so the period is about 4× 10−16s. For a single atom in a 1 Gauss
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field, the plane of the orbit would wobble quite quite slowly compared to the orbital
period. Now it seems reasonable to think of the electron orbit precessing in a coherent
way without rattling along a guiding wire. The easiest scale on which to observe Larmor
precession is atomic.

2.2 The Gyromagnetic Ratio

If we stick with current loops, then Larmor’s formula predicts the remarkable result that
any magnetic moment composed of a particular kind of charge (proton, electron, etc.)
will precess with the same frequency per unit field ωL = q/2m. However for various
kinds of particles posessing intrinsic spin, this just isn’t so.

There is a more general way to think about the Larmor frequency. We know that
the angular momentum ~J will precess in its cone about ~B. In a time ∆t, the angular
momentum ~J changes by

∆J = ωLL sin θ∆t.

But this is also
τ∆t = µ sin θB∆t.

So in general, we can define

ωL =
µ

J
B.

The field-independent part of this formula, γ = µ/J , is called the gyromagnetic ratio of
the current loop.

The reason to go to the trouble of defining γ this way is that it is somewhat indepen-
dent of our picture of what is really going on between angular momentum and magnetic
moment–and the nice, classical picture of current loops doesn’t work when we talk about
magnetic moments on the atomic and smaller scales.

We need to use the gyromagnetic ratio (rather than altering the value of the an-
gular momentum) because in quantum mechanics, the spin angular momentum comes
in discrete chunks of h̄/2, and orbital angular momentum comes in double-size chunks
of h̄. So when we need to describe different experimental precession frequencies, the
gyromagnetic ratio gives us an adjustible parameter. It does turn out that, with further
study, what γ you observe is predictable from first principles–so it’s not just a fudge
factor.

3 Longitudinal Polarization and T1 Relaxation

The better polarized your sample, the larger your transverse signal. Ideas from statis-
tical mechanics allow you to predict just how the pre-polarization depends on the size
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and duration of the pre-polarizing pulse.

Given the energy difference between neighboring angular momentum states, ∆E =
h̄ωL, the relative populations of these states at thermal equilibrium will be

N↓
N↑

= e
−ωLh̄

kBT .

(Here the ↑ state is the one pointed along ~B.) Here we are applying Boltzmann’s
Law. This statistical mechanical result does not mean that individual spins remain
in the same state. Rather, it means that because of the availability of thermal energy
∆E = h̄ωL at this temperature, the rates of transition R↑→↓ and R↓→↑ are balanced for
this population ratio.

The total magnetic moment due to polarization between these two levels will be
proportional to the fractional population difference

∆N

N
=
N↑ −N↓
N↑ +N↓

= tanh(
ωLh̄

2kBT
)

For ωLh̄� kBT ,

tanh(
ωLh̄

kBT
) ≈ ωLh̄

2kBT
,

as you can see by expanding the exponentials to first order. This result is called Curie’s
Law (for paramagnets). The higher the polarizing field (so the higher ωL) and the lower
the temperature, the larger the NMR signal corresponding to transitions between the
two levels.

A polarized sample tends to depolarize when the polarizing field is turned off. This
is because the ever present thermal fluctuations will tend to redistribute the spins ac-
cording to Boltzmann’s Law for the new energy level structure where there is no energy
difference between ↑ and ↓.

Now with ∆E = 0, the principle of detailed balance says that the average net
rates of transition R↑→↓ and R↓→↑ can only depend on the population difference–that
is,

R↑→↓ −R↓→↑ = Γ× (N↓ −N↑),

that is,
d∆N

dt
= −Γ∆N,

with Γ standing for the intrinsic transition rate given by quantum mechanics. So if we
take an initially polarized sample out of equlibrium by shutting off the polarizing field,
the net magnetization ought to decay like

M(t) = M0e
−tΓ = M0e

− t
T1 .
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This last equation serves to define the LF relaxation time T1. If all of the nuclear
spins in the sample are behaving independently (that is, if the collection of nuclei is an
ideal paramagnet), then you can think of T1 as the average lifetime of a nuclear moment
projected along the axis of the magnetic field.

The same T1 works the other way, when an initially unpolarized sample is put into
a polarizing field. In this case, you’d expect M(t) to grow according to

M(t) = M∞(1− e−
t
T1 ).

So one experiment to do is to watch how the initial signal of a given sample depends on
the length and strength of the initial polarizing pulse. Since Γ describes the rate at which
spin-flipping transitions occur, it can be altered by changing the kinds of interaction the
nuclei see–for example, with the addition of a small concentration of a paramagnetic salt
like CuSO4.

4 The Vector Model of NMR and the Spin Echo

Since the NMR signal for each Larmor frequency that you see corresponds to a large
number of spins, it is often useful to think of the net magnetization for each as a classical
vector, with simultaneously measureable components, precessing about the applied mag-
netic field. You build up an initial, total vector by polarizing the sample in a strong field,
and then let each piece precess with its own Larmor frequency in the Earth’s field. But
as these agglomerated vectors precess around in the Earth’s field with different Larmor
frequencies (because of different level splittings), some will get ahead and others will lag
behind.

Irrespective of T1-like spin flipping processes, the total magnetization vector eventu-
ally disperses around the precession circle, and the signal in the pickup coil diminishes
to zero because of this dephasing. But because it is coherent, you can reverse the effect
by running time backwards. This is the idea behind the Spin Echo experiment. If you
can somehow get everything to run backwards, then the signal which unbuilt itself to
zero in time τd will rebuild itself back to a maximum in the same time τd after the time
reversal.

4.1 The RRF and the Π pulse

Of course you can’t reverse time in this lab, but you can simultaneously flip all of the
spins over using a pulse tuned to the mean Larmor frequency. To understand why this
is so, it’s convenient to introduce a frame of reference that rotates with the Larmor
frequency, an example of a Rotating Reference Frame (RRF). In this frame, the various
out-of-sync vectors composing the magnetization move ahead of or lag behind the RRF
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Figure 1: Spins precessing at different rates

x-axis according to the difference of their Larmor frequency from the mean.

Now imagine that you could introduce another magnetic field at a fixed direction in
the RRF xy plane, and at just the mean Larmor frequency. By looking at the equations
of motion, you can prove that in the RRF, the various pieces of the magnetization vector
would have to precess out of the plane around this apparently stationary magnetic field.
If applied for long enough, all of the vectors will have flipped over to the opposite side
of the precession circle. The next two figures show the effect in the RRF rotating at
the mean ω̄L for the sample. Consider the effect on two pieces of magnetization with
slightly different ωLs. Before the pulse, the faster bit was ahead of and pulling away
from the slower. After this Π pulse, the faster bit finds itself on the opposite side of the
precession circle, behind and catching up to the slower one. When it catches up, the
signal that fell apart has been rebuilt. The rebuilt signal is the Spin Echo.

To see the Spin Echo, you just need to understand how to apply a field that appears
constant in an RRF. In the lab frame of reference, such a field must in fact be rotating.
Now while you could rig up a circularly polarized RF magnetic field, note that a uni-axial
AC field can be thought of as the linear combination of a right-circularly-polarized and
a left-circularly-polarized wave:

~BRH = Bx̂ cosωt+Bŷ sinωt,

~BLH = Bx̂ cosωt−Bŷ sinωt,

so
~BRH + ~BLH = 2Bx̂ cosωt.
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Figure 2: Before the Π pulse

Figure 3: After the Π pulse
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So the easy thing to do is to use a pair of coils perpendicular to the Earth’s field to
generate a magnetic field that oscillates at ω̄L. For a moment to precess by an appreciable
angle, the effective motion in the RRF has to be slow. Otherwise the torquing field keeps
undoing its own effects. So only half of the uniaxial field is effective in flipping the spins–
the other half rotates so fast in the RRF that its effect is close to zero. For a Π pulse,
the oscillating field (strength BOsc) must be on just long enough so that the Larmor
precession in BOsc/2 (just the RRF effective half) flips the spins over. That means

h̄γqBOsc

2m
× tΠ = π.

Of course, if the frequency of BOsc is precisely the mean Larmor frequency, the RRF
motion for the advanced and slow spins will be more complicated. The RRF motions of
these spins will be a combination of their excess/deficit precession plus the new precession
around BOsc. So the distribution of spins spreads slightly during the Π pulse.

5 Transverse (T2) Relaxation

While T1 controls the overall size of your oscillating signal, a different time constant,
known as T ∗2 , controls the lifetime of the oscillations. There are a few good reasons why
this should be the case. For starters, coherent oscillations of the sample magnetization
depend upon the synchronized motion of spins. There are a couple of ways in which this
synchronization can diminish.

5.1 Static Field Dephasing

One way is through static field inhomogeneity. Spins precessing with different Larmor
frequencies will gradually get out of phase with each other. This static-field dephasing
can be reversed into a Spin Echo.

Static-field dephasing in liquid samples is often an artifact of a nonuniform applied
precession field. Since all relaxation broadens Fourier transforms, this extrinsic effect
can obscure intrinsic information about the different energy levels in the sample. This
is why you go to great lengths to ensure that the precession field is uniform.

5.2 Dynamic Dephasing and the Spin Echo Amplitude

While static field dephasing can be reversed by flipping the spins, you can’t the dephasing
due to randomly time-varying fields. Even if time varying fields from extrinsic sources
are minimized, your sample will fluctuate microscopically on its own. The time scale for
this intrinsic relaxation is called T2 Clearly, T ∗2 < T2. All of the mechanisms available
for T1 relaxation are also available for T2 relaxation. In addition, time dependent field
fluctuations that are too far from resonance to induce LF spin flips will still alter the
precession frequencies and dephase the precessing spins in an irreversible way. So T2 <
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T1. In the Spin Echo experiment, the difference between the recovered signal and the
original is the effect of the irreversible part of the TF relaxation.
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