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a rough value of the current amplitude at resonance. Ke find for the current at resonance

(s'' (3m &I= —2~el I
a O.O4cos

( 6 I. cos~r.
Ep)

(III-25)

The current is in phase with the impressed electromotive force in the two extreme thirds of the
antenna, but out of phase in the middle third. As the current amplitude at the center of the antenna
is only some 4 percent of that at first resonance, the second and higher order resonances are evidently
of little importance as compared with the first resonance.
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The partition function of a two-dimensional "ferro-
magnetic" with scalar "spins" (Ising model) is computed
rigorously for the case of vanishing field. The eigenwert
problem involved in the corresponding computation for a
1ong strip crystal of finite width (n atoms), joined straight
to itself around a cylinder, is solved by direct product
decomposition; in the special case n = ~ an integral
replaces a sum. The choice of different interaction energies
(&J, &J') in the (01) and (10) directions does not
complicate the problem. The two-way infinite crystal has
an order-disorder transition at a temperature T= T. given

by the condition

sinh(2 J/kT, ) sinh(2 J'/kT, ) = 1.

The energy is a continuous function of T; but the specific
heat becomes infinite as —log [T T, ~. For —strips of
finite width, the maximum of the specific heat increases
linearly with log n. The order-converting dual transfor-
mation invented by Kramers and Wannier effects a simple
automorphism of the basis of the quaternion algebra which
is natural to the problem in hand. In addition to the
thermodynamic properties of the massive crystal, the free
energy of a (0 1) boundary between areas of opposite order
is computed; on this basis the mean ordered length of a
strip crystal is

(exp (2J/kT) tanh(2 J'/kT))".

INTRODUCTION

HE statistical theory of phase changes in

solids and liquids involves formidable
mathematical problems.

In dealing with transitions of the first order,
computation of the partition functions of both
phases by successive approximation may be
adequate. In such cases it is to be expected that
both functions will be analytic functions of the
temperature, capable of extension beyond the
transition point, so that good methods of ap-
proximating the functions may be expected to
yield good results for their derivatives as well,
and the heat of transition can be obtained from
the diR'erence of the latter. In this case, allowing
the continuation of at least one phase into its
metastable range, the heat of transition, the
most appropriate measure of the discontinuity,

may be considered to exist over a range of
temperatures.

It is quite otherwise with the more subtle
transitions which take place without the release
of latent heat. These transitions are usually
marked by the vanishing of a physical variable,
often an asymmetry, which ceases to exist
beyond the transition point. By definition, the
strongest possible discontinuity involves the
specific heat. Experimentally, several types are
known. In the n Pquartz tran—sition, ' the
specific heat becomes infinite as (T, T) i; this-
may be the rule for a great many structural
transformations in crystals. On the other hand,
supraconductors exhibit a clear-cut finite discon-
tinuity of the specific heat, and the normal state
can be continued at will below the transition

' H. Moser, Physik. Zeits. 37, 737 (1936).
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point by the application of a magnetic field. '
Ferromagnetic Curie points' ' and the transition
of liquid helium to its suprafiuid state' are
apparently marked by essential singularities of
the specific heats; in either case it is dik. cult to
decide whether the specific heat itself or its
temperature coe%cient becomes infinite. Theo-
retically, for an ideal Bose gas the temperature
coefficient of the specific heat should have a
finite discontinuity at the temperature where
"Einstein condensation" begins.

In every one of these cases the transition
point is marked by a discontinuity which does
not exist in the same form at any other tempera-
ture; for even when a phase can be continued
beyond its normal range of stability, the transi-
tion in the extended range involves a finite heat
eH'ect.

Whenever the thermodynamic functions have
an essential singularity any computation by
successive approximation is dificult because the
convergence of approximation by analytic func-
tions in such cases is notoriously slow.

When the existing dearth of suitable mathe-
matical methods is considered, it becomes a
matter of interest to investigate models, however
far removed from natural crystals, which yield to
exact computation and exhibit transition points.

It is known that no model which is infinite in

one dimension only can have any transition. ''
The two-dimensional "Ising model, "originally

intended as a model of a ferromagnetic, ' is known
to be more properly representative of condensa-
tion phenomena in the two-dimensional systems
formed by the adsorption of gases on the sur-
faces of crystals. It is known that this model
should have a transition. ' Recently, the transi-
tion point has been located by Kramers and
Wannier. " In the following, the partition func-

2W. H. Keesom, Zeits. f. tech. Physik 15, 515 (1934);
H. G. Smith and R. 0. Vjfilhelm, Rev. Mod. Phys. 7, 237
(1935).

3 H. Klinkhardt, Ann. d. Physik f4(, 84, 167 (1927}.
4W. H. and A. P. Keesom, Physica 2, 557 (1935);

J. Satterly, Rev. Mod. Phys. 8, 347 (1938); K. Darrow,
ibid. 12, 257 (1940).' E. Montroll, J. Chem. Phys. 9, 706 (1941).

6 K. Herzfeld and M. Goeppert-Mayer, J. Chem. Phys.
2, 38 (1934).

~ E. Ising, Zeits. f. Physik 31, 253 (1925}.
R. Peierls, Proc. Camb. Phil. Soc. 32, 471 (1936).

~ R. Peierls, Proc. Camb. Phil. Soc. 32, 477 (1936).
» H. A. Kramers and G. H. Nannier, Phys. Rev. 60,

252, 263 {1941).

tion and derived thermodynamic functions will

be computed for a rectangular lattice with
diferent interaction constants in two perpen-
dicular directions; this generalization is of some
interest and does not add any difficulties.

The similar computation. of the partition
functions for hexagonal and honeycomb lattices
involves but relatively simple additional con-
siderations. A general form of the dual transfor-
mation invented by Kramers and Wannier
together with a rather obvious "star-triangle"
transformation are used in this connection, and
the transition points can be computed from the
transformations alone. While these were a great
help to the discovery of the present results, the
logical development of the latter is best relieved
of such extraneous topics, and the subject of
transformations will be reserved for later
communication.

OUTLINE OF METHOD

As shown by Kramers and Wannier, " the
computation of the partition function can be
reduced to an eigenwert problem. This method
mill be employed in the following, but it will be
convenient to emphasize the abstract properties
of relatively simple operators rather than their
explicit representation by unwieldy matnces.

For an introduction to the language we shall
start with the well-known problem of the linear
lattice and proceed from that to a rectangular
lattice on a finite base. For symmetry we shall

wrap the latter on a cylinder, only straight
rather than in the screw arrangement preferred
by Kramers and Wannier.

The special properties of the operators in-
volved in this problem allow their expansion as
linear combinations of the generating basis
elements of an algebra which can be decomposed
into direct products of quaternion algebras. The
representation of the operators in question can
be reduced accordingly to a sum of direct
products of two-dimensional representations, and
the roots of the secular equation for the problem
in hand are obtained as products of the roots of
certain quadratic equations. To find all the roots
requires complete reduction, which is best per-
formed by the explicit construction of a trans-
forming matrix, with valuable by-products of
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FiG. 1. Linear crystal model. Spin of entering atom Q
depends statistically on spin of atom in previous end
position ~.

identities useful for the computation of averages
pertaining to the crystal. This important but
formidable undertaking will be reserved for a
later communication. It so happens that the
representations of maximal dimension, which
contain the two largest roots, are identified with
ease from simple general properties of the
operators and their representative matrices.
The largest roots whose eigenvectors satisfy
certain special conditions can be found by a
moderate elaboration of the procedure; these
results will suffice for a qualitative investigation
of the spectrum. To determine the thermo-
dyn'amic properties of the model it suffices to
compute the largest root of the secular equation
as a function of the temperature.

The passage to the limiting case of an infinite
base involves merely the substitution of integrals
for sums. The integrals are simplified by elliptic
substitutions, whereby the symmetrical param-
eter of Kramers and Wannier" appears in the
modulus of the elliptic functions. The modulus

equals unity at the "Curie point"; the conse-
quent logarithmic infinity of the specific heat
confirms a conjecture made by Kramers and
Kannier. Their conjecture regarding the varia-
tion of the maximum specific heat with the size
of the crystal base is also confirmed.

THE LINEAR ISING MODEL

As an introduction to our subsequent notation
we shall consider a one-dimensional model which
has been dealt with by many previous authors. '"
(See Fig. 1.)

Consider a chain of atoms where each atom (k)
possesses an internal coordinate p, &~& which may
take the values &1. The interaction energy
between each pair of successive atoms depends
on whether their internal coordinates are alike
or different:

u(1, 1)= u( —1, —1)= —u(1, —1)
= —u( —1, 1)=—J,

or
u(/k(k) u(k —1)) — Ju(k)u(k —1)

The partition function of this one-dimensional
crystal equals

e E/k T ——
Q (T)

„(() „(&) . . . „(k/)

Following Kramers and Wannier, ' we express
this sum in terms of a matrix whose elements are

(/k l
P

f
/k&)

—e—u (p, ga') // r

Then the summation over (/k(') u( ") in (2)
is equivalent to matrix multiplication, and we
obtain

where X is the greatest characteristic number of
the matrix U. Since all the elements of this
matrix are positive, X will be a simple root of
the secular equation

and the identity

will be satisfied by a function (eigenvector)
p„(/k) which does not change sign. " In the
present case we have

=2 cosh(J/kT).

It will be convenient to use the abbreviation

J/kT= II.
The matrix V, written explicitly

//'es, e ")
(e—'i eH )

represents an operator on functions p(k)), which
has the effect

(I 4(u)) =e"4(u)+e "0( u) (9)—
This operator is therefore a function of the
"complementary" operator C which replaces p
by —p

(10)

»S. B. Frobenius, Preuss. Akad. Wiss. pp. 514—518
(1909); R. Oldenberger, Duke Math. J. 0, 357 (1940).
See also E. Montroll, reference 5.
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given by Kramers and Wannier.

sinh 2H sinh 2H*= cosh 2H tanh 2H*

=tanh 2H cosh 2H*=1. (17)

Alternatively, we can express the hyperbolic
functions in terms of the gudermannian angle

gd u=2 tan '(e") ——.,'~=2 tan ' (tanh!, u), (18)

smh u cot(gd u) = coth u sin(gd u)

= cosh u cos(gd u) = 1. (19)
and whose eigenfunctions are the (two) different
powers of p Then the relation between II and H* may be

written in the form
(C 1)=1 (C, j)= —j (11)

gd 2H+gd 2II*=~~.

THE RECTANGULAR ISING MODEL

(20)
with the characteristic numbers +1 and
respectively. The linearized expression of U in
terms of C is evident from (9), which is now
written more compactly We consider n parallel chains of the same type

as before. We shall build up these chains simul-

taneously, tier by tier, adding one atom to each
chain in one step (see Fig. 2). With the last atom
in the jth chain is associated the variable p, ;,
capable of the values &1. A complete set of
values assigned to the n variables describes a
configuration (p) = (u~, .

, u ) of the last tier of
atoms. The operator which describes the addition
f new tier with the interaction energy

U= e~+e—~C. (12)

The eigenfunctions of U are of course the same
as those of C, given by (11); the corresponding
characteristic numbers are

=X+——e~+e-~ = 2 cosh H

X =e~ —e ~=2 sinh IX.
o a

We shall deal frequently with products of many
operators of the type (12). It is therefore a
matter of great interest to linearize the logarithm
of such an operator. Following Kramers and is now
Wannier, "we introduce the function of II

ui((u), (j'))= —Z Jjjjj = &T~&Zj jj j —(21)
2=1

rIG. 2. Cylindrical crpstal model. Configuration of added whereby
tier—0—0—0—depends on that of tier —~—~—0—
in previous marginal position.

H*= —,'log coth H = tanh ' (e 's)

and obtain

n

(14) U —P (sjj+s jjCj)—
= (2 sinh 2II)"I~ exp(H*B), (22)

U=e (1+e 'sC) =es(1+(tanh II")C),

which may be written

whereby
n

&—=2 C~
j=1

(23)

U= (e /cosh IZ*) exp (H*C)
= (2 sinh 2')"*exp (H*C). (15)

The first, less symmetrical form serves to keep
a record of the sign when H is not a positive
real number. For example,

( —H) "' =H*a-,'s.i
(16)

cosh(( —H)*) = &i sinh H~.

For reference, we tabulate here the relations

and the individual operators C~, -, C„have
the effect

(Cjt 4(j» ' ' 't j ji ' ' '~ 8&))

=0'(jl» ' 'i ljj »jjj~ ljj+» —' ' 'i p~) (24)

Next, let us assume a similar interaction between
adjacent atoms in a tier, only

' with an inde-

pendent value J' for the pairwise energy of
interaction. For symmetry, let the nth atom be
neighbor to the first; then with the convention
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that the atones in a tier are numbered modulo n,

Pj+n =Pj7

the total tierwise interaction energy will be

+2(gl& '
tr Pn)

n n

= —I' Q p,p;+, = kTF—I' p IJ,IJ;+i. (25)
j=l j=1

The effect of this interaction is simply to multi-

ply the general term of the partition function,
represented by one of the 2" vector components
P(p&, , p ), by the appropriate factor
exp( —N2(p&, .

, p )/kT); the corresponding
operator U2 has a diagonal matrix in this
representation. It can be constructed from the
simple operators sq, , s„which multiply g by
its first, , nth argument, as follows

This 2"-dimensional problem we shall reduce to
certain sets of 2-dimensional problems. So far,
we have expressed A and 8 rather simply by the
generating elements sl, Cl, . , s„, C of a certain
abstract algebra, which is easily recognized as a
direct product of n quaternion algebras. How-
ever, the expansion (27) of A is not linear.
Following a preliminary study of the basis group,
we shall therefore construct a new basis for a
part of the present algebra, which allows linear
expansions of both A and 8 in terms of its
generating elements.

QUATERNION ALGEBRA

We have introduced two sets of linear oper-
ators si, , s„and Cl, , C by the definitions

(s, p(p~ '''
p~

''' p))
(s;, 4 (1„,P„))=PA (I i, , P„) (26)

A=+ s,s;+„
4'(0» ' ' '

~ Pi) ' '1 4)

=PA'(I&) ' ' '~ IJ j, ' 'i Pa)~

(Cji 0(pii ' ' '
i pji ' ' '

~ pn))
(27)

V2 ——

exp�

(FI'A ) . (28)

"See H. A. Kramers and G. H. Wannier (reference 10).
E. Montroll (reference 5); E. N. Lassettre and J. P. Howe,
J. Chery. Phys. 9, 747 (1941),

We now imagine that we build the crystal in

alternate steps. We first add a new tier of atoms
(see Fig. 3), next introduce interaction among
atoms in the same tier, after that we add another
tier, etc. The alternate modifications of the
partition function are represented by the product

~ . U2 Vl V2 Vl V2 Vl

with alternating factors; the addition of one tier
of atoms with interaction both ways is repre-
sented by (V2V~) = V. The eigenwert problem
which yields the partition function of the crystal
is accordingly

Xp= (U, p) = (V2 V&, p)
= (2 sinh 2FI)""(exp(II'A) exp(II*8), P). (29)

Vis. , in the more explicit matrix notation used by
previous authors"

n

gP(p~ .p„) =exp~ FI' Q p,p,+g I

n

X g exp~ II Z ~J
'

11k(~~' ~-').
P] 0 ~ OP +]

We shall see that the group generated by these
operators forms a complete basis for the algebra
of linear operators in the 2 -dimensional vector
space of the functions g(p~, ~, p„). Their
abstract properties are

s;sl, ——sj,s;, CjCI, = CA, C;;

s;Cg ——Cps, ; (jWk).

(31)

I—x—~—o. L.
—X—~—0

—x—0—o

—x—~—C
I

I I

—X—X—0

—X—X—Q

—X—X—Q

—X—X—0
I

Fro. 3. Two-step extension of a two-dimensional crystal.
(a) A new tier of atoms p is added (Vi); their configuration
depends on that of atoms ~ in previous marginal position.
(b) Interaction energy between marginal atoms p is
introduced (V2), which modifies the distribution of con-
figurations in &his tier of atoms,

The algebra based on one of the subgroups
(1, s, , C;, s;C;) is a simple quaternion algebra.
The group of its basis elements includes (—1,
—s;, —C;, C,s;) as well; but this completion of the
group adds no new independent element for the
purpose of constructing a basis. If we disregard
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the sign, each element is its own inverse. Except
for the invariant element (—1) and the unit
proper, each element together with its negative
constitutes a class. This algebra has just one
irreducible representation

(1 01 (1 0 )
D2«) =

I I; D2(s,)
EO 1) (0 —i)
(0 11 ( 0 ii
(1 0&

Our algebra of operators in 2n-dimensional

space can be described accordingly as the direct
product of n simple quaternion algebras, which
is still referred to as a (general) quaternion
algebra. Each one of its 4" independent basis
elements can be expressed uniquely as a product
of n factors, one from each set (1, s, , C;, s,C;).
Still, each element furnishes its own inverse and,
except for (—1) and the unit, each element with
its negative constitutes a class, which immedi-

ately characterizes all possible representations of
the algebra: The characters of all basis elements

with the sole exception of the unit must vanish.

This of course is a consequence of the direct
product construction. Another is the recognition
that the algebra has only one irreducible repre-
sentation

D2X D2X X D2 ——D2n

which is of 2" dimensions; our definitions (30)
describe an explicit version of it.

With the customary restriction that the ele-

ments of the basis group are to be represented

by unitary matrices, the representations of the
4" independent basis elements must be orthogonal
to each other (in the hermitian sense) on the 2'"

(or more) matrix elements as a vector basis.
For the vector product in question is nothing but

2 D(Qi).*D(Q2)-
=Tr. (D(QiQ2 )) =Tr. (D(Qi)),

and if Qi and Qm are independent elements of the
basis group, then their quotient Q3 is an element
different from the unit and (—1), so that its
character vanishes.

Since orthogonality guarantees linear inde-

pendence, the irreducible 2n-dimensional repre-
sentation of our 4" independent basis elements

will suffice for the construction of any 2"X2n
matrix by linear combination; our quaternion
algebra is equivalent to the complete matrix algebra

of 2" dimensions T.he choice between the two
forms is a matter of convenience; the quaternion
description seems more natural to the problem
in hand. One of the main results obtained by
Kramers and Wannier will be derived below; the
comparison with their derivation is instructive.

In the following, the entire basis group will not
be needed. Since our operator A involves only
products of pairs of the generating elements
$1, ~, sn and 8 does not involve any of these
but only Cz, , Cn, we shall have to deal only
with that subgroup of the basis which consists
of elements containing an even number of factors
$;. This "even" subgroup, which comprises half
the previous basis, may be characterized equally
well by the observation that it consists of those
basis elements which commute with the operator

C= C1C2 ~ C„

which reverses all spins at once

(32)

SZSn& $2$n& ' '
& Sn—1$n & Cz~ C2s ' ' '

& Cn —1

and either algebra is equivalent to the complete
matrix algebra of 2" ' dimensions. The previously
independent operator C is now expressible by
the others because either C= 1 or C= —1,
according to whether we are dealing with even or
odd functions. This choice of sign determines the
only difference between the two versions of the
algebra in question. Moreover, the operator

A=Ps, s,+,

(C 4'(» ~-)) =4 ( pl, ,
—p.) (3—2a)

The representation (30) is now reducible because
the 2" ' even functions satisfying

(C 4)=4
are transformed among themselves as are the
odd functions satisfying

(C 4)=
The corresponding algebras are both of the san&e

type as before, with (n —1) pairs of generating
elements



CM. YSTAL STATISTICS 123

is the same in both versions, but obviously or, compactly
f(~, &)~f(» ~),

required to satisfy the identities

1; (even functions) (34)
C1C2 ~ ~ C =C= —1; (odd functions).

The commutation rules are simply described
when the two sets' are arranged in the interlacing
cyclic sequence

s st, Ct, s1se, C2, ' ' ', s„ys„, C, (s sy, ' ' '). (35)

Here each element anticommutes with its neigh-
bors and commutes with all other elements in

the sequence.

Dua1 Transformation

The fundamental algebraic reason for the dual
relation found by Kramers and Wannier is now
readily recognized: In the representation which

belongs to even functions, the two sets (33) are
alike because the starting point of the sequence
(35) is immaterial. Neither does it matter if the
sequence is reversed, so that the general rules of
computation remain unchanged if each member
of the sequence (35) is replaced by the corre-
sponding member of the sequence

Ck) SkSk+1) Ck~l) Sk+1Sk~2) ' ' '
~

Accordingly, the correspondence

SjSj+1 Cka j Cj~sk+&j 1)sk&j (36)

describes an automorphism of the whole algebra.
Under this automorphism we have in particular

A~8
8—+A

B=Q C;
j=l

is not; here the interpretation of C makes a
di6'erence.

The arbitrary elimination of one of the sets of
operators which enter symmetrically into the
problem causes much inconvenience. The sym-
metry can be retained if we start with the two
series of operators

sls2i s2s3i ' ' '
i snsl i Cli C21 ' ' '

i Cii (33)

all in the algebra of even functions. Similarity
can be inferred from the additional observation
that the characters. of all representations are
determined by the commutation rules, or equally
well from the theorem that every automorphism
of a complete matrix algebra is an internal
automorphism. When we return to our original
mixed algebra of even and odd functions, our
result takes the form

are similar, so that the part of the spectrum of
U(H*, H'*) which belongs to even functions can
be obtained from the corresponding part of the
spectrum of V(H', H) by the relation

X+(H*, H'*)

= (sinh 2H sinh 2H') "'9+(H', H). (38)

This result applies in particular to the largest
characteristic numbers of the operators in ques-
tion because both can be represented by matrices
with all positive elements so that, by Frobenius'
theorem, "the corresponding eigenvectors cannot
be odd.

In the "screw" construction of a crystal
preferred by Kramers and Wannier, ' the addi-
tion of one atom is accomplished by the operator
(K in their notation)

exp(Hs„&s„) (sinh 2H) & exp(H~C ) T
= (sinh 2H) ' exp(Hs„~s„) T exp(H*C~),

where 1is a permutation operator which turns
the screw through the angle 2 / sTnhey indicate
in explicit matrix form a transformation which
effects one of the automorphisms (36), namely,

sjsj+1

whereby naturally

Cj ~sn —j+1sn—j

(1+C)f(~ I3)-(1+C)f(&,~) (3&)

Application to the operator U given by (29)
shows that the two operators

(sinh 2II) "~'(1+C) V(H', H)
=2 ""(1+C) exp(H'A) exp(H*B),

(sinh 2II')" '(1+C) V'(H*, II'*)
= 2—""(1+C) exp(H'8) exp(H*A)
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The equivalent of (38) follows. In consequence,
if the crystal is disordered at high temperatures
(small II), a transition must occur at the
temperature where the equality

The explicit representation of a transformation
which leads from one of these systems to the
other is obtained from the expansion of the
identity

H= II*= -'; log cot ir/8 (39a) ~(ua ui& '''&un un)

is satisfied.
Unfortunately, our simplified derivation fails

to exhibit one of the most important properties
of the "dual" transformation: When applied to
large two-dimensional (~') crystal models, it
always converts order into disorder and vice
versa; this result is readily obtained by detailed
inspection of the matrix representation. The
consequent determination of the transition point
for the rectangular crystal by the generalization
of (39a)

H'=H"", (kT=kT, ) (39b)

will be verified in the following by other means.
On the other hand, the given results are still

but special applications of a transformation
which applies to all orientable graphs, not just
rectangular nets. Except for its "order-convert-
ing" property, this transformation is best ob-
tained and discussed in simple topological terms.
The properties of the "dual" and certain other
transformations will be given due attention in a
separate treatise; it would be too much of a
digression to carry the subject further at this
point.

(sj, b(ul ul ''' uj uj '' u u ))
= u '~(ui -ui' u u' u. u. ')-(40)-

The eigenvectors of (Ci, , C„) are the different
products of p~, ~ ~, y, with the normalizing
factor 2—n~'

Fundamental Vector Systems

We shall give brief consideration to the vector
basis of our quaternion algebra, as described by
the operator formulation (30). The systems of
eigenvector which belong to the two sets of
operators (si, , s„) and (Ci, , C ) are easily
identified. The representations (30) of the former
are already diagonal, so that their eigenvectors
are b functions

=2 "(1+u,'ui) (1+u„'u„). (42)

This product description of a 8 function is often
more convenient. The two systems (40) and (41)
yield diagonal representations of the operators
A and 8, respectively. The construction of the
latter is a little simpler. With a slight variation
of the notation we find

(&i (ujiuj2' ' 'uia)) = (&—2k)(ujiuj2' ' 'uJ'1~) (43a)

so that any homogeneous function of (ui, ~ ~ ~, u„)
is an eigenvector of B. With no repeated factors
allowed, the number of independent homogene-
ous functions of degree k is the binomial coeffi-

(n&
cient

) ). Accordingly, t:he secular polynomial
gk

1s
n

~a —~~ —=II (n —2k —l )(i). (43b)

72 n

i A,
i II (1+.,) Ir (1-.;) II (1+.;) I I

E I. 1&+1 ),q+i j
( 71 72

=(~-4k)l II (1+u,) II (1-u;)".
7'1+1

& II (1+,)
i

(44 )
2k+1 )

The alternations of sign are located arbitrarily
behind j&, j2, - j», but their total number must
be even = 2k. On the other hand, the result (44a)
is equally valid when p,; is replaced throughout
by —p, so that the spectrum of A repeats in
duplicate that part of the spectrum of 8 which
belongs to even functions, and its secular
polynomial is

[n/2]

IA-1
I

=- II ( -4k-~)""). (44b)

Whereas 8 measures the degree of a function
P(u&, , u„), the operator A simply counts
alternations of sign in the configuration (ui,
u„). The analog of (43a) is now

(C ( i"' u-"")) =(—) "(ui"' u-"") (41) By an obvious transformation, one-half of the
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paired characteristic numbers of A may be
assigned to even functions and the other,
identical half to odd functions. We note again
that the three operators

(1 —C)A (1+C)A (1+C)B
are similar, whereas (1 —C)B has a different
structure.

Some Important Elements of the Basis

As a preliminary to the simultaneous reduction
of the representatio'n of the operators A and 8,
we shall consider certain elements of the basis
group which will recur frequently in the process
and introduce a special notation for them. We
have already encountered

Paa Cas Pa, a+l ~a~a+i.

In general we define P,b as the product

Pab =SaCa+1Ca+2 ' ' Cb 1Sb',

(a, b=1, 2, , 2n) (45.)

These operators are elements of the "even" basis
and commute with C. They satisfy the recurrence
formula

P~, 1+i =P~~P»P~, ~+i= P.~s~Ct st+i (45a)

The period of this recurrence formula is 2n;
increasing either index by n has the effect of a
multiplication by ( —C)

is 2n, it is evident from (46) that the period of
the commutation rules will be just n; for the
factor C commutes with all the operators P,b.

For this reason we shall need a modified Kro-
necker symbol with the period n, as follows

D(0) =D(n) =1, D(m) sin(ms/n) =0. (50)

Indices which diifer by 0 or I (mod =2n) will be
called congruent; (in the former case we call
them equal). Only the congruence of correspondi' indices matters; no important identity results
from the accident that a front index coincides
with a rear index. The distinction between front
and rear indices represents the distinction be-
tween the opposite directions of rotation (1, 2, 3,

, n) and (1, n, n —1, ~, 2) around the base
of the "crystal. "

The eEect of simultaneous congruence is
evident from (47) together with (46); one obtains
either the unit (1) or the invariant basis element

(—C). More generally, a product of the form

Paa'Pbb' ' ' 'PjcIc'

with any number of factors equals one of the
invariant elements ~1, ~C if both front and
rear indices congruent to each of the possible
values 1, 2, , n occur an even number (0, 2, 4,

~ ~ ) of times. This rule can be obtained from

(48) by simple manipulation; compare the
derivation of exchange rules below. In addition,
thanks to the relation

Pa, b+n Pa+n, b CPab Pab C. (46)
PgrP22 ' ' P..= (—)"C'gC2 C~ = (—)"C, (51)

2
Pgp —S~Cg~g ' ' ' CQ (sees/&CD y

' ' ' Cg+ysg —1 ~ (47)

More generally, we thus obtain the "rule of the
wild index"

PacPbc PadPbds PacPad PbcPbd (48)

The analogous result for indices congruent
(mod =n) is obtained immediately by combina-
tion with (46)

PacPb, c+n PadPb d+n =PadPb+n, ds

(49)
PacPa+n, d PbcPb+n, d PbcPb, d+n.

While the period of the recurrence formula (45a)

The product (45) obviously may be written in

reverse order when (b a) n, —and =by (46), this
result is easily extended to all (a, b). Accordingly,

an invariant element also results if both front
and rear indices congruent to each of the numbers
1, 2, -, n occur an odd number of times. A
count of the group elements shows that there
can be no further identities of this sort; accord-
ingly, if a product satisfies neither of the given
conditions, it must be a basis element different
from ~1 and ~C.

The commutation rules for the operators P,b

can be broken up into rules which govern the
exchange of indices between adjacent factors in

a product. These in turn can be obtained by the
rule of the wild index from the commutation
rules which involve P „=—C,. We first consider
the product

PabPbb PabCb = —SaCa+l' ' ' Cb lSJ)Cb.
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When c=—b, the commutative character of the
multiplication is trivial. Otherwise, there is only
one factor sb in P,b, so that this operator anti-
commutes with Cb ———Pbb. Accordingly,

P bPbb+ ( ) PbbP h 0 ~

In view of (48) this may be written equally well

P,.Pb, +(—)D( -')Pb,P„=O.

The given formulas describe the effect of P b

in terms of the vector basis (40). The effect of
this same operator on a vector which belongs
to the fundamental system (41) can be described
conveniently with the aid of functions which
introduce a change of sign once in a period
(1, 2, , n). Individually, these functions have
the period 2n. We shall use the standard notation

However, the result does not depend on the
presence of a wild index, because

sgn x=' 0
1

x&0
x=o
x&0.

PacPbd PacPadPadPbd PbcPbdPadPbd

( )D(a—b)p P ~
The same reasoning applies to the exchange of
rear indices, and we obtain the general rule

( )D(a b)p P—„()D(c d)P d—P„
= ( )' "+ ' —"'Pbdp„. . (-52)

Accordingly, the exchange of indices between
adjacent factors in a product takes place with
change of sign unless the trivial exchange of
congruent (wild) indices is involved.

The product P,Pbd is seen to be commutative
when neither (a —b) nor (c—d) divides n, and in
the trivial case when both do. When one and
only one congruence exists, the factors anti-
commute.

For future reference we give here the direct
operational definition of P b. In the case

cot(a ,')vr/n)—-cot(b —-', )s/n
we have

(Pab, '(i'(jb(, ' ' ', j(a)) = jjajhb4'(jb), ' ' ', jba,

—j.+) —jb-) jb j.)' (5»)
(sin ((b —a ——',))r/n) )0)

(P.b, 0(j ), , j -)) = —j .j b4 (—j (,

jbac jhayz ' ' ' j(b—) pb ' ' ', jb ); (53b)

(sin((b —a ——,') s./n) (0) .

When cot(a ——,')s/n~ cot(b ——,')s/n, substanti-
ally the same formulas apply, only the changes
of sign are arranged (—jb), . , —jbb ),

jhb, , j(a, —j(a+), , —j(„) in the case (a)
and

(j b,
. , j b-), —j b, ,

—j., j.+), , ) .)
in the case (b).

Then the function

sgn (sin( jar/n) )

changes sign at j=0 and j=n and vanishes for
these values of j, while the function

sgn(sin(j ——,') s/n)

has everywhere the absolute value 1, with
changes of sign between 0 and 1, and between n
and n+1. With this notation we obtain

(Pab, jjj]jjjb
' ' ' jbjb) =SgnLSin((b —a ——,') s/n)

Xg (sin(jh —a —-', ))r/n sin(jh —b+ &)s'/n) )
h=1

X jb.jbbj j) jjb .(54)

This formula can be verified by direct count of
the sign changes caused by the operator

Ca+lca+2 ' ' ' Cb—1

acting on each factor of the product

PbgigV2' ' 'g~a

THE BASIS OF A REDUCED REPRESENTATION

Some Important Commutators

The operators

+ =Q &j&j+l=g Pa, a+)q B=Q Cj= Q Paa
1 1 l 1

are invariant against the dihedral (rotation-
rellection) group of transformations

jb,—)jbb~j, (j=1, 2, , n).

From the operators P.b we can form 2n linear
combinations which exhibit the same symmetry,
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whereby

Ara g Pa, a Irar--
a=1

Ap ———J3, A i ——A.

most simply as follows:

(56)

(56a)

With the convention (58a) this is
the trivial case k=—m. Conversely,
tators of Ai, A2, , A2n with their
tators G1, G2, , Gn 1 can be
terms of the former as follows:

also valid in

the commu-
own commu-
expressed in

In view of (46) we have

A +n ———CA = —A C. (57)

n

2[G„,Ak] = P ([P.,P.+„„Pb,b+b]
a, b=1 —[PxaPx. a+m, Pb kb-]),

From the commutators

[Paar Pbd] PaaPbd PbdPaa

which vanish unless exactly one congruence
between the indices is satisfied, we can form
n —1 independent linear combinations of dihedral
symmetry, which may be written most compactly

n

Gm= d P ([Paar Pa+m, x] [Paar Px, abm])
a~1

n

(PaxPa+m, x PxaPxa+m) (,58)
a=1

While the definition of G1, G2, will be
extended conventionally to the complete period
m = 1, 2, ~, 2n, they satisfy the identities

G „=—G„; GQ ——G„=O (58a)

so that there are only n —1 independent operators
included in the set. The analog of (57)

Again if we exclude the trivial case m=—0, the
congruences b=—a, b=—a+m will not be satisfied
simultaneously. Hence,

2LG, Ak] = E ([P..P.+,„P..+k]
a=1

+[P.,P,+„,„P.+„,+„+„],

[PxaPx, a+mr Pa —k, a]
—[P gP, ,+, P, i,+„,,+„]).

Here

[PaxPa+m, xr Pa, a+k] 2Pa. ajkPaxPa+mx,
2+a, a+&+a, a+IrI a+m, a+@ 2+a+m, a+I'1

[PaxPa+ra, xr Pa+m, a+k+m]

2I agI a+mf s+a+m, a+0+m 2-pa, a+a+m j

etc. , and we obtain

G +n
———CG = —G,C

is valid. The commutators of Ai, A2,
with each other necessarily can be expressed in

terms of the set (58). By definition =Z (4P.. +i+- 4P.. +i; )— —

(59) 2[Gmr Ak] = Q ( 2Pa+m, ayk+2Pa, a+k+m

A2n
a=1

+2Pa —k, a+m 2Pa—k+m, a)

[A„,A„]=0.
By (57) we have also

[A„,A +.]=0.
If we exclude these trivial cases, the congruences

a =b; rb+ k =—bi+rrb—
will not be satisfied simultaneously when we
compute

n

[Ak, A„]= Q [P., .+.k, Pb, b„„]
a, b=1

or, siinply
a=1

[G, Ai,]=2Ai, + —2Ak,„(61)
which is also valid in the trivial case m=—0. It
is easily shown from (60) and (61) that the
commutators G&, ~, G„ 1 commute with each
other. We have generally

[G„,[Ak, AQ]]= [[G,Ak], AQ]+[Ak, [G,AQ]].

Using this together with (60) and (61) we find

[G„,Gk]= [(2Akg„—2Ak „,), AQ]

whence
[Ai„A,]=4Gi, „, (60)

n n

= P [P„,P... „+]+kg [P... P. „+k,]
c=1 a=1

+[Ak, (2A —2A „)]
= 8GI:+m —8GI:

+8Gi, —8Gi,+
——0. (61a)
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Y„=(4n) 'P— sin(((b —b)r)r/n)P. b,
a, b=l

2n

Z„= ( i/—Sn) P sin((a —b)rpr/n)
a, b=l

X (Pa,Pb, P„P,b).—

(62)

Again these definitions will apply conventionally
for the entire period r = 1, 2, , 2n, whereby

X „=X„,
Yp ——Y„=0,

Z „=—Z„; Zp=Z„=O.
(62a)

Comparison of (62) with (56) and (58) yields
directly

X,= (2n) ' P cos(mrpr/n)A„,

2n

Y,= —(2n) ' P sin(mr)r/n)A„, (63a)

2n

Z„= (i/2n) Q sin(mrpr/n)G„.

Conversely, from the orthogonal properties of
the coefficients

2n

A Set of Generating Basis Elements

The commutation rules (60) and (61) suggest
the introduction of the operators Xp, X1,
X, I'1, ~ ~ ~, F~ 1, Z1, , Z 1defined as follows:

2n

X,= (4n) '-P cos((a —b)rpr/n)P. b,
a, b=1

Conversely, the operators (62) can be con-
structed from A and 8 by means of (60), (61),
and (63a).

The relations (57) and (59) now become

=(1+(—) C)Z, =O (64)

so that the operators (62) belong to the algebra
of even functions when r is odd, and vice versa;
they annihilate even functions for even r and
odd functions for odd r. We could deal with
each set independently, but the two have many
properties in common, and it is often convenient
to keep them together.

The commutation rules for the operators (62)
are easily obtained from (60) and (61). Thanks
to the orthogonal properties of the trigonometric
coefficients, we find

[X„X,]=I Y'„Y,]=[Z„,Z.7=0,
[X„Y,]=[Y„Z,]= [Z„X,]=0; (65a)

cos(rpr/n) icos(spr/n)

The only commutators which do not vanish are

[X„Y„]= —2iZ„

[Yrr Z,]= 2iXrr (r=1, 2—, , n 1) (6—5b)

[Z„X,]=—2i Yrr

We shall show next that the operators (X„Yrr
Z„), which commute with the members of other
sets (X„Y„Z,), anticommute among them-
selves. For this purpose we compute

A ., =g (X,cos(mr)r/n) —Y„sin(mr pr/n)),

(63b)
(X +i Y)2 —(4n)

—2 g C(a+b c d)rci/nP— —

a, b=1

G„= i Q Z—, sin(mr)r/n).

In particular, A and 8 admit the expansions

B = —A() ———Q X„=—Xp —2X)
1

—2X„1—X„,

by the definition (62). In the given expansion
we may interchange ((b, b) and (c, d) independ-
ently without disturbing the coefficient. Taking
the mean of the four alternatives we obtain

(8n) —2 Q S(a+b c d)rrri/n— —

2n

A =A& ——P (X, cos(rpr/n) —Y, sin(rpr/n))
1

=Xp+ 2(Xb cos(ir/n)
—Y) sin()r/n)) +
+2 (X„)cos((n —1))r/n)

—Y„)sin((n —1))r/n)) —X„.

(63c)

a, b=1
X (P .Pbd+P, dPb. +Pb,P d+PbdP, .)

and by the exchange rule (52), this equals

2n

(8n) —2 P C (a+b c d) r c i/n——

X (1—( —) ' ")(1—( )' "')P—-Pbd

The only products which contribute to this sum



are those for which 0,=—b as well as c=—d, whereby
according to (46) and (47)

P,=P„P +„,,+„——I; P,P,+„=P,P,+„,.= —C

and we obtain

(X„+oY)'=(8n) —' P 88'~'-'}" ""(1—(—)"C)
a, c=l

whence, observing (62a)

Xo'=-', (1 —C) =Ro,
(66)

Ro, (n even)X.'=-', (1 —(—)"C)=R.=
1—Ro, (n odd)

(X,.+iF,)'=0; (r=1, 2, , n 1)—. (67)

The latter result implies that X, , F„anticommute

(67a)

and that their squares are identical

For r=o and r=e the operators Y„and Z„
vanish; in either case we obtain a commutative
algebra with a degenerate basis (Ro, Xo) or
(R„,X„);cf. (66).

In the original quaternion algebra described
by (31) the operators Ro, R&, . , R„q, R„are
projections. It remains to enumerate the dimen-
sions of these projections [in the irreducible
representation (30)g. By (66), Ro and R„are 2" '
dimensional. By (64), the others have at most
that many dimensions, because R„ is contained
in Ro or in (1—Ro) as r is even or odd. Further
information can be obtained from suitable ex-
plicit expansions of R„ in terms of the basis
elements P,~. A very compact expression is
obtained by evaluating

R,=-,'(X„'+F,')

directly from the expansions (62), which yields

X„'=Y„'=R„. (67b) cosL(~ —b —c+d) r~/n j&.&o'
a, b, c, d=1 (69)

Now (65b) implies

and since the product in turn must anticommute
with either factor, e.g. ,

X(YX)= (XF)X=—(FX)X,

To obta1Il an 1Iltefest1ng modification of th1s
formula we interchange the pairs of indices (a, b)
and (c, d) independently. By (52) the mean of
the four alternatives equals

R„=2 'n-' p (cos((u b +c)dr /o—r)n—
a, b, c, d

we have similarly

F„Z„=—Z, F„=—iX, ; Z„X„=—X„Z„=—i F,.
P &=» cos((~ —b+c —d)r~/n))

g (1+( )D(0, »+D(c d))P—+—o&

etc. , and
R„X„=P„Y„X„=iP„Z„=X„,

R„'=R,X„X„=X„'=E.„.

The multiplication table is accordingly

A„=R„'=X„'=F„'=Z„',
X„=R„X„=X,R„=iF„Z„=—iZ, F„,
F', =R„F„=Y„R,=iZ„X„=—iX„Z„,

(68)

Z„=R„Z„=Z,R, =iX„Y„=—i P„X„.

These results together imply (67b) as well as
its extension

Z, '=iX„F„Z,=X„'=Y„'=R,.

The operator R„ thus defined satisfies the rela-
tions appropriate to the unit of a quaternion
algebra with the hermitian basis (R„X„,F„Z„),
sos. , the real basis (R„, X„F'„,oZ,) because

The - anticommuting product terms in which
either a=—b but not c=—d, or vice versa, cancel
out. The terms for. which neither congruence is
satisfie yield

2-'n-' Q sin((u —b) ror/n) sin((c d) ror/n)P. .&r ~. —

The terms for which both congruences are
satisfied yield either the identity or —(—)'C
and add up to o(1 —(—)"C). Accordingly,

R„=(1—(—)"C)

X (o'+ (Sn) ' Q sin((a —b) ror/n)
a, b, c, d=l

csin((c —d)ror/n)P. Po~). (70)

The dimensions (character) of the projection R~

are simply enumerated from (70). When n)2,
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we have —1/P, Pg~/1 unless c=—b; c—=d, so
that the dimension of R, is one fourth of the
total 2".

Dim(R„) = 2"—'; (r = 1, 2, , n 1—);
(I & 2). (71)

For the case n = 2; r = 1 we have from (63c) and
(64)

B(1+C) = —4X, ; (n = 2) .

By (43a), the even eigenvectors of 8 are the two
possible even homogeneous functions: (1) and

(pig2); the corresponding characteristic numbers
of 8 are 2 and —2. Neither vanishes, so that in
this case R» contains all of 1 —Ro, and we have
the "exceptional" result

Ri=1 —Ro, Dim(Ri) =2; (n= 2). (71a)

Irreducible Representations

In the previous section we have completed the
abstract theory of the algebra generated by the
operators A and 8 defined by (2/) and (23),
which are involved in the eigenwert problem
(29). Apart from illustrative references to the
representation (30), our main results have been
derived from the abstract commutation rules
(31). Now the task before us is to apply these
results to the solution of problems such as (29),
which can be formulated explicitly in terms of
A and B. For this purpose we shall again thinl.
of the abstract numbers s», s~, .

, s„, C», C2,

, C„as linear operators in a 2"-dimensional
vector space, defined by the matrix representa-
tion (30).

Essentially, the problem of reduction consists
in finding the vector spaces which are invariant
towards A and 8, in the sense that neither A nor
B operating on any member of an invariant set
can yield anything but a linear combination of
the vectors which belong to the same set. Since
the set of operators (62) can be constructed from
A and 8 and vice versa fcf. (63c)), it is evident
that the invariant sets in question must be
invariant towards all the operators (62). In view
of the commutation rules (65), we may specify
for added convenience that the matrices repre-
senting the operators (62) and their products
shall be direct products of irreducible representa-
tions of the factor groups (R„, X„, F„,Z„).

To answer the main questions dealt with in
the present communication it will suf6ce to find
the largest solution to the problem (29). The
identification of the corresponding irreducible
representation of the operators (62) is an easier
task than the complete reduction, which we
shall leave aside for future attention. We shall

go a little further and identify separately for the
vector spaces of even and odd functions the
representations of maximal dimensions.

By (64) we may consider the sets of even and
odd functions separately. The former are annihi-
hilated by (R„, X„F„Z,) for even r=(0, 2, 4,

.), the latter for odd r=(1, 3, 5, ). By
(66), the space of even functions is formed by
the projection 1 —Ro ———,'(1+C), that of odd
functions by Ro ———',(1—C).

In the representation (30) the operator of (29)
has a matrix whose elements are all positive.
Accordingly, by Frobenius' theorem" the compo-
nents of the "maximal" eigenvector must be all
of one sign in this representation. It follows
immediately that the vector in question cannot
be odd. More precisely, it cannot be orthogonal
to the even vector

yo(pi, , p.) =const=2-""

(normalized), which happens to be the only
function of degree zero. By (43a), this is an
eigenvector of 8 corresponding to the simple
characteristic number n

(&, xo) = (&(1—Ro), xo) =iixo-

Since by (63c) and (64)

—&=X»+X2+ . +X2n,
—8(1—Ro) =Xi+X3+ +X2„ i

2X»+2X3+ +2Xgm»',

(n = 2m)

2X»+2X3+ +2X2m»

+X2.,pi, (I= 2m+1)

and Xo, X», - . , X commute with each other,
they commute with B. Accordingly, operation
with X, on xo will either annihilate it or convert
it into some function of the same degree. But xp
is the only function of degree zero. Hence, xo is
a common eigenvector of Xo, X», X„satisfying

(X„xo)=f.yo,' (r=0, 1, . ', n)
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By (68) and (66) the operators X„all satisfy the
identity

X,' —X,=X,(X,—1)(X,+ 1) = 0, (74)

so that $0, $~, ~, $ are to be selected from the
numbers 0, 1, —1 . Since +0 ls an even vector
we have

$o = $2 = $4 =

and by comparison with (73)

$1+$8+ ' ' ' +$2nI.—

There is just one way to satisfy this requirement

hi=$3= =4m-~= -1,
(X., xo) = —xo.,

(75)(r=1, 3, , 2L(n —1)/2j+1).
Having identi fied one common eigenvector xo of
X~, X3, , we proceed to construct others
which belong to the same invariant set by
operations with Y~, Y3, . - . In general if
satisf es

(X„x)=$„x; (r= 1, 3, ),

then by (68) and (65)

(X„, ( F„,x)) = (X,Y„x)= ( —Y„X„,x)

alone. Accordingly, the vectors which we can
obtain by operating with various combinations
of (I'~, Fq, ) on xo—at most once apiece—
form an invariant set. The vectors thus obtained
can be distinguished from each other by their
different sets of characteristic numbers; when
necessary we shall designate them individually

x($i, 4, , &2 i,'(p)); (~=2'=n 1—).
In the case of odd m we have $„=—1 for every
vector in the set ' there is no Y . For the rest
every combination occurs exactly once, as is
expressed by the following formulation of the
relations derived above

(X„x(f&,b, , P2 „(q)))
= r,x(&~, &3, , r~. ;(~—)),

(I;, x(ki, b, , b,.-~; (~)))
(76)

=x(h, —&., , h--i; (~)),

(X x(6, b ' ' ' 4—2' (p)))
= —x(b, E. 2; (~)). -

A more explicit description of the functions x is
not necessary. The relations (76) in conjunction
with the verified construction of the one vector

= -~.(~, x), x(—1, —1, , —1; (p)) =2 "" (76a)
(X„(F„x))= (X,F„,x) = (I „X„x)

suffice for de finition. From the one given vector,
the construction is in effect completed by means
of the formal relations (68).

The representation (76) is analogous to (30);
but it has only m = [n/2] factors and the number
of dimensions is 21""', if we denote by Lx] the
greatest integer which does not exceed x. More-
over, denoting by Q„a general function of the
factor basis (R„, X„, F, , Z,), the representation
(76) is a direct product of the two-dimensional
representations

= t, (I „, x); (swr)

so that the operation with Y„gives a new com-
mon eigenvector; the sign of the corresponding
P, is reversed and the others are unchanged. If &,

vanishes, Y„will only annihilate x because by
(68)

For this reason it is useless to operate with
Y2, Y4, . on yo. It is equally useless to operate
more than once with any one F„because by (68)
P,. is its own inverse in the subspace R„ D~.~=D2(Qg) XDg(Qg) X XD2(Q„g);

(n =2m)Y„'=X„'=R,,
D,...=D2(Qi) XD2(Q3) X

XD2(Q„2) XD (Q ); (m=2m+1)
(77)t'-1 01 t'0

D2( I",) =
I 0)

'

so that the second operation at best undoes the
effect of the first. Finally, since

Z„=iX„Y
EO 1)

the operation with Z„can only give us such
eigenfunctions of X„as we can obtain with F„D+(X,) =(1); D (X,) =(—1)
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supplemented by the one-dimensional repre-
sentation D (Q„) wl1en II ls odd.

An lnvarlant vector spRCC IIlRy be constructed
by the same procedure from any comInon
elgenvector of (Xo, XI, ' ' ', X ). Tile cl1RIRcters

of the representation mill be determined by the
initial $o and $, which are common to all
members of an invariant set, together with the

values (0 or 1) of fP, $~', , $~ 1. For the signs
of &I, b, ~ ~, $„1can be changed independently

by operation with Vl, I2, - ., F„~, excepting
those which vanish in the 6rst place. To put, it
in geometrical language, the general type of the
representation is determined by an intersection
of projections

POg I ~ 4 ~

where for f= f; 2, ' ', s —1, .I z ls elthel R„or
1—&„, while R, is subdivided into -I, (Ro+Xo)
Rnd —,(R,—Xo), and R„ is similarly subdivided.
Th.e vcctol spRCC constructed Rbove from Xo js
the only intersection common to all of the
projections R1, R3, ~, R~„J2~ j. For every such
lntersectlon must contain an even elgenvector
of 8 corresponding to the characteristic number
n when n is even or II 1—$ when I—is odd, in

either case an even function of degree less than
2, and the only function that satisfies this
speci6cation is const. =xo.

We have already pointed out that by Fro-
benius' theorem, that eigenvector which corre-
sponds to the largest solution of (29) cannot be
orthogonal to xo. Therefore, this eigenvector
belongs to the invariant set constructed above,
which contains yo. The expectation of a simp/e

largest characteristic number is in accord with
our 6nding that the invariant vector space which

corresponds to the maximal representation (77)
ls umque.

In connection with the considerations of
Lasscttre and Howe, " it ia a matter of interest
to identify not only the largest solution X, of

(29), but in addition the largest solution ), „
which belongs to an Odd eigenvector. As it
happens, this solution is the second largest in

magnitude. We.shall prefer a slight variation of
the above procedure. From one common eigen-

"E.N. Lassettre and J. P. Howe, reference 12.

X.'= —X, «»(r~/II)+ F, sin(r~/II);

we shall construct others by operations with,
say, Zl, ~ ~ «, Z 1, which anticommute with the
corresponding Xg .Then instead of 8 wc consldcr

n 2n

A =+ sos;~I ———Q X„*=XO—P 2X,*—X.,

ROA =-,'(1—C)A (79)

Xo—2Xu* —2X4' — . —2X -2 —X.;(&=2III)

Xo—2X,*—2X,*— —2X„ I, (n =2m+1)

Lcf. (63c)j. By (68) the operators (78) satisfy

X,*'=8,=X,'; X,*'—X,*=0. (80)

The matrix which represents the operator

exp(H'A) =II (cosh H'+sp +, sinh H')
9—1

in terms of the vector basis (41) which renders
'j3 diagonal consists of two 2" '-dimensional
matrices which transform even functions among
themselves and odd functions among themselves,
respectively. In either matrix all elements are
positive (provided H'&0), so that Frobenius'
theorem applies in the vector spaces of even and
odd functlons scpR1 Rtcly. Thc mod i6cation by
the factor exp(H*B) in (29) does not affect this
conclusion because this factor is represented here
by a diagonal matrix whose elements are all
posl tive.

By (44) tile IRI gest cl1RrRcterlstlc number II of
A is double and belongs to the two con6gurations
(+i +~ ''

i +)i ( & ~
'''i )~ whIch Rre

free from alternations of sign. %hen the corre-
sponding even Rnd odd elgenvectors

Xo =2 '(2 "II (1+~1)
Xo' "

~2 "II (1—u;)) (81)

are expanded in terms of the vector basis (41),
their components are all positive, so that the
represcntatio'ns which correspond to the charac-

teristic numbers )I, and X,„of (29) must
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belong to unique invariant vector spaces which
contain go* and xo& &*, respectively. The former
has been constructed above from go. The odd
vector xo& &* is a common eigenvector of all X,*
and satis6es

e&=-Z(&~„x~'-")=—
] Z h, I«'-"')

which requires

$ =$ *=—1; (n=2m),

so that the vector go( &~ is included in the
pl o]ection

2 (+0+XO)~2~4 ' ' ' ~2[n/2)

and in 2(R —X„)when n is even. The "maximal
odd" representation is therefore

D.,=D,(Q.) XD (Q,) X XD,(Q. ,);
(n= 2nz+1)

(82)
D-*=D+(Qo) XD~(Q2) X.

XD.{Q. .)XD (Q.); { =2~)
with the notation of (77). When I is odd, D .
has 2&" '&" dimensions, the same number as
D, , and there can be no further representation
with this number of dimensions, for there is only
one pair of configurations mith less than two
alternations of sign. For even e the representa-

tion D,x has only 2|:" ')" dimensions it is still
unique. However, one other representation with
the same number of dimensions is compatible
with the known spectrum (44) of A, namely,

D.ii = D-(Qo) XDm(Q2) X

XD~(Q--~) X D+(Q.) (82a)

The count of configurations with n (even) alter-
llatlolls yields oile pail'' (+ —+ — + —)
and (—+ —+ —+); reasoning analogous
to the above shows that exactly one invariant
vector space belongs to (82a).

The identification of the remaining invariant
vector spaces involves more elaborate calcula-
tions; the complete theory mill be given in a
later publication. However, in order to settle an

interesting question which mill arise, we shall
complete the discussion of those n vector spaces
which contain the n functions of degree one

xi(2r; pi, .
, p.) =I &Q exp(2rksi/N)pg. (83a)

&~1

These functions may be classi6ed according to
the representations of the dihedral symmetry
group (55). To the identical representation of
(55) belongs xi(0; {g));the corresponding repre-
sentation of the algebra (68) is (82). For even n,
xi(s; (p)) belongs 'to another one-dimensional
representation of (55) and to the representation
(82a) of (68). The remaining functions (83a)
belong pairwise to two-dimensional representa-
tions of (55). To show that the pair of similar
representations which belong to the pair
xi(+2r; (p)) are described by

D-(Q.)XD.(Q")XII D.(Q"); ( dd)
(83b)

D (Q.) XD {Q.) XD.(Q,) Xn D.(Q..);
(I even}

one may verify that the vectors in question are
annihilated by Xgt

(X„,x,(2r; (p))}= (X„,x,(-2r; (p))) =0;

(0 &2r &n). (83c)

The direct calculation by means of {62)and (54)
is not too laborious; since Xm„commutes with 8,
only the terms of first degree have to be com-
puted. The remaining factors in (83b) are then
determined as before by the relation

(» xi) = (ri —2)xi

SOLUTION OF THE EIGENVfERT PROBLEM

It is a simple matter now to compute those
solutions of the eigenwert problem (29) which
belong to the representations {77), (82), and
(83); we only have to solve a set of quadratic
equations.

As to the "physical" significance of the solu-
tions, we recall that the characteristic number
itself yields the partition function and with it
the thermodynamic fun'ctions of the crystal.
Moreover, as shown by Kramers and Kannier,
the individual components P(pi, ~, p„) of the
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eigenvector which belongs to X, describe the
statistical distribution of configurations of the last
tier of atoms added to the crystal. " On the
other hand, if we know in addition the eigen-
vector P'(pq, , p„) which belongs to X, for
the adjoint operator V'= V~'V2' ——V& V2, then the
component products

4(~i, , ~-)4'( i, , ~.)

describe the statistical distribution of configura-

tions in the interior of the crystal. "
With the latter result in mind, we first trans-

form V to self-adjoint form by operation with

V~&; then

V = Vg& VVg & = Vi' V2 Vg'

= (2 sinh 2H)~"

Xexp(-', H'A) exp(H*B)exp(2H'A) (84)

has the same characteristic numbers as V, and

the squares

P(1 i ~-) =f(~~ . ~-)

of the components of its principal eigenvector
will describe the distribution of configurations
in the interior of the crystal.

To solve the eigenwert problem we may
transform t/' into a function of the operators

Xp, X~, ~, X„alone, or equally well into a
function of Xp*, X~*, X„*. The latter
procedure involves slightly simpler relations;
either result is readily converted into the other

by means of the real orthogonal operator"

(n—1

exp~ P ((n r)/2n)~iz, ~—

n=l

(1—(1—sin (r~/2n) )R„+cos (r~/2n) iZ, ) .
r=1

For reference we observe here the somewhat

more general rule

exp(inZ, ) (X, cos P+ Y„sin P) exp( —inZ, )

=X„cos(2cx+P)+Y, sin(2n+P) (85)

which is easily verified by means of the multi-

plication table (68). The latter —and (85)—are

"This is not exactly the dual transformation; it takes
a further transformation with II(1—R,+X,) to obtain
(86).

also valid if X, , Y„,Z„are replaced throughout by

X,*= —X, cos(rs./n) + F, sin(re/n),

Y„*=X, si n(r s/n) + F, c os(r s/n),

z.*=—z.
(86)

=X0"+2 P (cos(rs./n)X„*
—sin(r~/n) Y„*)—X„*.

Substitution in (84) yields

V = (2 sinh 2H) ""exp((H* —H') Xo*)
n—1

g (U,) exp( —(H*+H')X„*) (87)

U, =exp( —H'X„*) exp( —2H*X,) exp( —H'X„*)

= (1—R,)+ (cosh 2H' cosh 2H*

—sinh 2H' sinh 2H* sco(r /sn)) R„
—(sinh 2H' cosh 2'*
—cosh 2H' sinh 2H* cos(rs/n)) X„*

—sinh 2'* sin(r7r/n) F„*. (87a)

By inspection of the factored form we note that
transformation with (1—R,+iZ, ) changes U,
into U„', which differs from U„ in the signs of
the coefficients of X,.* and F„*.Adding the two

together we obtain

U, + U, '=2(1 —R„+(cosh 2II' cosh 2''
—sinh 2II' sinh 2FI* cos(r~/n))R„)

= 2(1—R„)+2 cosh y„R„

whence the characteristic numbers of U„be-
longing to the subspace R„are e& and e &, of
equal multiplicity. (Those which belong to
(1—R„) are trivial, all equal to unity. ) Accord-

ingly we may write

U, =1—R„+cosh y„R„—sinh y„cos b„*X„'

—sinh y, sin 6„*F„*

=exp( —y, (cos 5,*X„*+sin 8„*Y„*)) (88)

where y„and b„* can be computed from 2II',

(dual transformation). We now recall the
expansions

A = —X()*—2Xg*— —2X„g—X„*
I

8= —Xp —2Xi —. —2X„g—X„
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2H*, p&, =rir/n by the rules of hyperbolic trigo-
nometry, as indicated by Fig. 4. We note in
particular the trigonometric relations'

cosh y =cosh 2H' cosh 2H*

—sinh 2H' sinh 2H* cos Ip, (a)

sinh y cos b*=sinh 2II'cosh 2H*

—cosh 2II' sinh 2' cos pI, (b)
(89)

sin pI/sinh y = sin 8*/sinh 2HP

= sin 8'/sinh 2H', (c)

cot V = (sin h 2H' coth 2H*

—cosh 2H' cos M)/sin p&. (d)

With the aid of (85) and (86) we find immediately
the transformations which reduce U„ to diagonal
form with regard to the eigenvectors of either
X„*or X, as a vector basis,

F1G. 4. Hyperbolic triangle. Stereographic projection,
conformal. Circles are represented by circles, geodetics by
circles invariant towards inversion in the limiting circle
C~ of the projection. See F. Klein, reference 15, pp.
293-299.

The spectrum of V is now known to the extent
that the common eigenvectors X of (Xp, XI,
X„ I, X„) and the corresponding sets of char-
acteristic numbers (pp, &I, , t„ I, g„) are
known. For every solution x to that problem V
has an eigenvector P with characteristic number
X given by

U„=exp( pI fI„PiZ—„)—exp( —y„X,*)exp(-,'b,*iZ„),
(90a)

U, =exp(-', (Ir —cp,

—b„*)iZ„)exp( —y,X,) exp( ——', (Ir —Ip, —8,*)iZ,),
(r=1, 2, ~, n 1)— (90b)

and by substitution in (87)

n—I

P=
(

exp( —Q —,'(Ir —cp, —8„*)iZ, (, y (,) )'
(V k)=lid

log X=-,In log(2 sinh 2H)+(H' —H*)pp

n —1
—E ~.~, -(H'+H*) ~'

(92)

exp) Q ', b,*iZ„-)V exp( —P ,'b„*iZ, (—
E =I J E .=I )

= (2 sinh 2H) "i' exp~ (H"—II')Xp"

n—1

—P ~„X,* (H'+HP)X—„* ~,
r=l

( n —I

exP
I

—P p(Ir —IP,

(n—I
—B„*)iZ,

)
V exp( P —,'(Ir —cp, —b„*)iZ„)

In the previous section we were able to show that
the largest characteristic number of V belongs
to the representation (77). In view of (76) and
(76a) we must put $p= $p=$p= . . =0. All the
others may be taken negative, which calls for
g =yo, and obviously this is the best choice.
Accordingly,

log X ,'n log—(2—sinh 2II)

yI+Vp+ .+VI I, (n=2m)
(93)

yI+yp+ . +y&„ I+(H'+H ); (n=2m+1).

These two results can be combined if we adopt
the natural conventions

= (2 sinh 2H)"" exp~ (II' H*)Xp— &„=21I'+2H*. (94)

n—1
—Q y„X„—(H'+H*)X„~. (91b)

r=1

"The formulas of hyperbolic trigonometry are obtained
from those of spherical trigonometry by the substitution
of imaginary lengths for the sides. See F. Klein, Vorlesungen
uber Nicht-Euklidische Geometric (Springer, Berlin, 1928),
p. 195.

Then (93) takes the compact form

log X, ——,'n log(2 sinh 2H) =-', g yp, i
r=1

=-,' P cosh '(cosh 2H'cosh 2H*

—sinh 2H' sinh 2H* cos((2r —1)s/2n)). (95)
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of more tangible quantities. Moreover, the result
(96) fails to describ'e the statistical correlation of
configurations in diff'erent rows of atoms. Meth-
ods of dealing with these two tasks have been
perfected to a considerable degree; but the
algebraic apparatus involved is elaborate enough
to make a separate publication advisable.

One quite tangible result is readily obtained
from (96b): The probability of a configuration
free from alternations is

FIG. 5. Variation of 8* with co for the quadratic crystal,
at various reduced temperatures (k/J) T=1/H.

gd 2H 1/H
0' 00

1.5' 7.551
30' 3.641
42' 2.472
45' 2.269
48' 2.089
66'f 1.29
77'f 0.92

t By mistake marked 60o on figure.
f By mistake marked 75 on figure.

The corresponding eigenvector can be described
by either of the two formulas

lt' (
Pmsx=

I eXPI ~ .
2(2r +2r 1

0 &2r &n

—82, i)iZ2, i I, x& I, (96a)

(1l', =
l

eXpl ~ —252„2ZZ2r i I, Xo* I. (96b)
E0&2r(n ) )

Here we have omitted operations with
exp((const)Z2„); (r=1, 2, ), because these
have no effect on yo or any other even vector.
The somewhat simpler form (96b) involves con-
struction from the even 8 function xo* given by
(81); one easily verifies that pi*, $2*, are all
negative for this vector.

The Principal Eigenvector

The result (96) describes explicitly the distri-
bution of configurations (P) of one row of atoms
in a crystal. The terms of the description are
quite unfamiliar. We should not regret this; for
among the main objects of the development of
this theory is the invention of more suitable
methods for the description of such distributions.
Even so, we must try to establish the connection
with more familiar types of description in terms

2F(++ +)=2K(-- -)
= g(cos'(2 62„2)).

Similarly, when n is even so that a configuration
free from persistencies of sign is possible, the
probability of such a configuration is

2P(+ -+— + -)=2+(-+-+. -+)
= g(Sin'(2bzr i)).

Presumably, the probabilities of the 2"—4 re-
maining configurations are intermediate between
the given limits. One can show from the commu-
tation rules that the probabilities of configura-
tions with 2, 4, 6, alternations of sign can be
computed successively from those terms in the
expansion of (96b) which contain, respectively,

2, 3, . factors of the type (Z„sin —2,8„*).
However, the labor involved increases rapidly
with the number of steps.

Of greater interest is the fact that the descrip-
tion (96) brings out a striking qualitative dilfer-
ence between those distributions which occur for
n(FI' —H*)»1 and those which occur for
n (II*—H'))) 1.

The variation of b» with cv=rzr/n is given
analytically by (89d); but a qualitative inspec-
tion of Fig. 4 is even more convenient. Let us
keep the side OD*=2H' of the triangle OD*D'
fixed; then the positions of the vertex D' for
co=2r/n, id=3zr/ZZ, are equidiStant pOintS On

a circle of radius OD'=2H*. Now if 2H*)2H',
then b*=~ for co=0, and 5* decreases from x to
0 as co increases from 0 to x. On the other hand,
if 2H*&2H', then 8~=0 for co=0. As co increases,
8* increases to a maximum value

sin '(sinh 2H*/sinh 2H') =5, (22r

given by (89c) for 5'=-'22r; with further increase
of co, 8* decreases again until 6*=0 for co=a.
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As regards the angle ~2(v. —6"' —cu) which occurs
in (96a), the axiom

8'+ 8*+co(m

of hyperbolic geometry implies

m —(u —6*&0.

A graphical representation of b~ as a function of
~ at various temperatures is given in Fig. 5 for
a quadratic crystal (H'=H). As regards the
variation of 8* with the' temperature for a fixed
co, we note that as the former increases from 0
to ~, 8* increases from 0 to m —co. For small
values of co, nearly all of this increase takes place
over a small interval of temperatures which includes
the critical point. A detailed inspection of the
operators Z„can be made to show that those for
which r is small are the most effective in intro-
ducing pairs of alternations far apart, which is

just what it takes to convert order into disorder.
Concerning the extreme cases of low and high

temperatures, one sees easily that in the former
case b* and in the latter case m —co —b~ will

remain small for all cv. This is neither new nor
surprising; it means that the low temperature
distribution consists mostly of configurations
which resemble the perfectly ordered arrange-
ment represented by go*, while the high tempera-
ture distribution resembles the completely ran-
dom distribution described by po.

Propagation of Order

The principal characteristic number (95) of
the eigenwert problem (29) yields, the partition
function, and the principal eigenvector deter-
mines the distribution of configurations. Never-
theless, the remaining 2"—1 characteristic num-

bers are of some interest. In general, these
describe the propagation of order. "In particular,
if long-range order is present, at least one of the
subsidiary characteristic numbers should be very
nearly equal to the principal. "Moreover, at the
transition point where long-range order appears,
one may expect a phenomenon analogous to the
branching of multiple-valued analytic functions
such as s"", whereby the order of the branch-

point bears a relation to the type of the singu-
larity. A survey of the solutions which belong to
the representations (77), (82), and (83) will

answer the most important questions.
To obtain all the solutions which belong to

(77b), the angles —,'b&*, -', 83*, in (96) may be
replaced independently by —,'bg +gÃ g83 +g7l,

~ ~, the corresponding characteristic numbers
are given by the formula

log X ——,'n log(2 sinh 2H)

(n = 2m) (97)

&+1&+3&' ' ' &'y2~ —g+ 2+2~+/ (n = 2m+ 1)

where the optional signs are independent and
each combination occurs once.

That part of the spectrum of V which belongs
to the representation (82) is obtained similarly.
The result is

log X ——,'n log(2 sinh 2Ii)

(H H ) +72~74~ ' ' ' ~ Y2ns —2+ g'r2mi

(n = 2m)
(98)(II' Ii~) +y2 +—y4&

(n = 2m+1).

For the largest of these we find the counterpart
of (95)

log X,„——,'n log(2 sinh 2II)
n—1

=(H' H')+—
n —1

= -',
~

go sgn(Ii' —Ii*)+P ym,
~

(99)
)

with the natural notation

yo ——.cosh '(cosh 2II' cosh 2ii~

—sinh 2H' sinh 2II*)= 2
i
II' IP ). (100)—

First of all, this differs from (95) in the substitu-
tion of yo, y2, for yi, y3, Moreover, the
sign of -,'yo is mandatory and changes at the
-critical point. This leads to a most remarkable
limiting result for large values of n. The two
sums

"F.Zernike, Physica 7, 565 (1938).
"See reference 13. See also E. Mpntroll, J. Chem. Phys.

10, 61 (1942).

Yl+73+ ' ' ' +72 —1 v(v/n)+r(3s/n) +
go+&2+ +V2. 2 =v(0)+ v(2s/n)+
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by the trapeze rule. For periodic, analytic func-
tions the approximation to the integral improves
very rapidly (exponentially) with increasing
number of intervals. Hence, with rapid con-
vergence

lim(X ./X .)=
n=oo

1 (IX')II*)
(101)

exp (2II*—2H'); (IZ' &H*) .

The distribution of the logarithms of the re-
maining characteristic numbers which belong to
(77) and (82)

log Xmax 2pi, log Xmax

—2p» . -, log Xmax —2p& —2p3,
(—) (—)

1Og ~max 2'Y2y 1Og ~max
(—)—2+4 ' ' ' 10g X ax —2/2 —2+4

becomes dense as n —+~. These "continua" re-
main distinct from the two largest characteristic
numbers as long as H'/II*. However, for
H'&H* the representations (83b) give rise to a
continuum

log A=log X .+go —y~. ; (H'&H*) (102)
(—)

which contains X, as a superior limit. Further
complications due to representations which we
have not investigated here are excluded by (43)
and (63c).

At the critical point IX=II*, we have F0=0;
(—)

y„=O(r/n) In this excep. tional case both X,„
and X,„itself are limits of "continua. " The fol-
lowing scheme summarizes the results

X„„=X,„-)(continuum); (FI')FI*)

, - =X,„=lim (continuum); (IS' = lI*) (103)

X, )X, =lim (continuum); (II'&II*).

At temperatures below the critical point
(H')H*), we have "asymptotic degeneracy" of
order 2, as a symptom of long-range order.
Above the critical point, there is no degeneracy
of the principal characteristic number. At the
critical point we observe branching associated
with an "asymptotic degeneracy" of infinite
order.

may be considered as different numerical quad-
ratures of

2x

(n/2s) y(o))des
0

THERMODYNAMIC PROPERTIES OF A

LARGE CRYSTAL

To compute the partition function per atom

X=X„=lim(X .)""
n=oo

(105)

for an infinite crystal we repla. ce the sum (95) by
the integral

log X„=2 log(2 sinh 2H)+— p(ra)da& (106)
21l 0

where

cosh y(co) = cosh 2H' cosh 2FI*

—sinh 2H' sinh 2H* cos |d.

There are several ways to show that (106)
actually describes a symmetrical function of H
and H'. For example, with the aid of the useful
identity

f 2'

log(2 cosh x —2 cos co)des= 2sx (107)
0

we can convert (106) into the double integral

log(X/2) =-,'s.—' log(cosh 2H cosh 2H'
0 ~ 0

—sinh 2H cos &v
—sinh 2H' cos cv')dcod&o'. (108)

It seems rather likely that this result could be
derived from direct algebraic and topological
considerations without recourse to the operator

In regard to the "propagation of order, " the
mean distance to which a local disturbance in the
crystal is propagated is inversely proportional
to log(X, /X). We note that this "range" of the
"short-range order" becomes infinite at the
critical point.

Since the functions (83a) belong to different
representations of the dihedral group (55), —and
the same is necessarily true for their respective
invariant vector spaces —,the result (102) ought
to contain information about the anisotropy of
the propagation of order. A tentative computa-
tion leads to the implicit formula

cosh 2H cosh 2FI' —sinh 2H cosh(P sin y)
—sinh 2FI' cosh(P cos p) =0 (104)

for the mean range (1/P) of the short-range
correlation in the direction p, when II'&II*.
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method used in the present work. Such a de-
velopment might well amount to a great im-
provement of the theory.

A generalization of the expansion whose initial
terms were given by Kramers and Wannier is
easily obtained from (108). With the notation

2a = tanh 2H/cosh 2H' = sin g cos g',
(109a)

2~' = tanh 2H'/cosh 2H= cos g sin g'

we expand the logarithm in powers of ~ and K'

and integrate term by term to obtain

log X ——', log(4 cosh 2H cosh 2H')

log 1 —2I(. cos co —2K cos N dG0JN'

0

= ——,
' g (2r+2s 1)!(—'r!) '(s!) '~'"~"' (109b)
r+s+0

Specialization to the case H =IE; a = ~' of
quadratic symmetry yields

log X —log(2 cosh 2H)

Iog(1 4K cos co& cos G)2)dtozd&dg

0

(109c)

= log (1 —z —4K —29m —265m —274520

—30773'&2 —364315'&4—.. .)

which confirms the result given previously to the
order K by Kramers and Wannier.

These expansions converge for all values of H
and H' because

~
2~ cos ra+2~' cos cu'

~

=2~+2~' = sin(g+g') ~1.

The limit of convergence of the series is given by
the transition point, ' and it converges even at
the limit. Of course it is not very suitable for
computation in the critical region; much better
formulas for this purpose will be obtained.

The partition function (106) yields directly
the free energy F of the crystal; the energy U
and the specific heat C are obtained by di8er-
entiation with regard to the temperature T.

s Kramers and %annier might well have inferred this
much from the uniform sign of the terms, which locates
the nearest singularity on the real axis.

The two terms of (111a)are separately the mean
energies of interaction in the two perpendicular
directions in the crystal (remember the interpre-
tation of temperature as a statistical parameter).

In diiferentiating the integral of (106) we
consider H* as a function of H which satisfies
[cf. (17)]

dH*/dII= —sinh 2H*= —1jsinh 2H.

The following formulas, wherein y, 8', and b~ are
considered as functions of H', H*, and or, are
easily obtained by differentiation from the
formulas (89); some of them are obvious by
inspection of Fig. 4.

By/BH'=2 cos 8*,

By/BFI*=2 cos 6',

8'y/BH"=4 sin' f/~ co-th y,

8'y/BH*'= 4 sin' h' coth y,

8'y/BH'BII*= —4 sin 8* sin 8'/sinh y.

(112)

Comparison with (106) yields for substitution i»

(111)

8 log X/BH'= cos 5* der/s. ,

(113a)

8 log X/OH=cosh 2H* —sinh 2H* I cos f/'d~/m.
0

and

8 ill/BH"=2'Josi ~ 'tl'cothyd /

For a crystal of N atoms

F= U —TS= —NkT log P,

LJ= F T(—dF/dT) =XkT'd(log X)/dT, (110)

C=d U/dT.

For the purpose of differentiation it will be
convenient to consider X, given by (106), as a
function of two independent variables H= J/kT
and H'= J'/kT. In this notation we have

U= —XJ(8 log ) /BH) NJ'(8—log X/BH')

1VkT(H—(B log X/BH)

+H'(8 log 7/BH')) (111a)

C =Xk(H'(8' log X/BH')

+2HH'(r/' log X/BAH')

+H"(8' log X/BH")). (111b)
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8' log h/BAH' = 2 sinh 2II*

(sin 6* sin 6'/sinh 'r)d~/ir,

8' lo~ X/RIP = 2 sinh' 2FI"

t
X

i

—1+coth 2II* cos 8'der/ir
I ~ Q

(113b)

and for the specific heat C,

d' log X
C= Nk = Nk(H coth 2H)'(2/x')

dH'

X (2Ki —2Ei —(1—ki") (-,'ir+ki "Ki)). (117)

In these formulas X~ and E~ denote the coniplete
elliptic integrals

lr

+ sin' 8' coth y dry/ir ~.)Q

The reduction of these integrals by means of an
uniformizing elliptic substitution for the hyper-
bolic triangle of Fig. 4 is dealt with in the
appendix. The qualitative behavior of the inte-
grals is easily seen from Fig. 4: The integrals
(113a) are continuous functions of H' and H
(or H*) for all values of these parameters, even
for II'=H* (critical point). The three integrals
(113b) are infinite at the critical point, otherwise
finite. The singularity results from a conspiracy:
In the case H'=H* we have r(0) =0 and at the
same t™e8'(0) = 8*(0)= 2ir, although at all
other temperatures

'r(&s) =r(0) = 2
~

II' IZ*~ )0, —
sin 8'(0) = sin 5*(0)= sin 0= sin s = 0.

For the special case of quadratic symmetry
H' =H the computation of the thermodynamic
functions can be simplified considerably. The
most convenient starting point is the double
integral of (109c), which is converted into a
single integral with the aid of (107). Using the
notation

ki ——4x = 2 sinh 2II/cosh' 2II,
(114)ki" ——&(1—kP)'= 2 tanh' 2II—1;

~

ki"
~

= ki'

we obtain

log(l~/2 cosh 2H)

1
log(-,'(1+(1—kP sin' y) l))dy. (115)

27/ Q

Differentiation under the integral sign yields for
the energy U,

d logU= —NJ
dH

NJ coth 2H~ 1+—ki"Ki—
~

(116))

~/2

Ki ——K(ki) = (1 —kP sin' p) ldll,
~ Q

~/2

Ei——E(ki) = (1 —ki2 sin'

p)ldll

Q

(118a)

The integral (115) cannot be expressed in closed
form; but rapidly convergent series can be
given. With the notation

Ki' ——K(k i'),

log pi = glrive = il K'i /Ki, (118b)

G $
—2 3—2+5—2 7—2+ . . ~

=0.915 965 594 (Catalan's constant),

one or the other of the following expansions (de-
rived in the appendix) will be found suitable for
computation:

log X = —,
' log(2 sinh 2II) ——,

' log gi

+P ( —)"(2n —1) log(1 —gP" '), (119a)
n= 1

00

log X = i2 log(2 sinh 2H) + (2/7r)G+ —P ( —)"

(1+(2n+ 1)(vari/ri) —exp t
—(2n+ 1)vari/ri])X—

(2m+ 1)' sinh'((m+ -', )vari/»)
(119b)

A singularity occurs for H=H*=-', log cot ~/8,
in which case k~ = 1; E~

= ix); .K~' ——2
x', E~ ——1 .

The specific heat becomes infinite at this critical
point; the energy is continuous because k~"——0.
The analytic nature of the singularity is evident
from the approximate formulas

K -log(4/k ')-log(2'/IH —H I)
(120)

G/Ii7k (2/ir) (log cot ir/8)'(Ki —1 —4ir)
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The critical data are

H. =J/kT, = ,' loge-ot s./8=0. 440 686 8,
—F,/ItIkT, =log X,=-', log 2+(2/n. )G

=0.929 695 40, (121)
—U, /XJ= 2*' = 1.414 213 56,

S,/a=log X.—2i II,=0.306 470

= log 1.358 62i.

The critical temperature and energy were given
already by Kramers and Wannier. " In addition,
their estimate of "about 2.5335" for X, was very
close to the exact value

A, ,= 2&e' '~ = 2.533 737 28.

The specific heat of a quadratic crystal is
represented in Fig. 6 as a function of 1/IS
= (k/J) T; the result of the best approximate
computation in the literature" is indicated for
comparison.

Figure 7 represents the specific heat curve of a
highly anisotropic crystal (J'/J=1/100), com-
puted from Eq. (6.2) in the Appendix. The
corresponding curves for the case of quadratic
symmetry (J'/J=1) and for the linear chain
(J'/J=0) are also shown. The abscissa is

2/(H+H') = 2k T/( J+J'), so that the three
curves have the same area.

SOME PROPERTIES OF FINITE CRYSTALS

1he partition function of any finite crystal is
an analytic function of the temperature. Perfect
order and a sharp transition point occur only
when the extent of the crystal is infinite in two
directions. It is a matter of interest to study the
approach to complete order and the sharpening
of the transition point with increasing size

(width) of the crystal.

Bound. axy Tension

First, let'us compute the "boundary tension"
between two regions of opposite order below the
transition point. This we can do by a slight
variation of the model. We simply chose a
negative interaction energy between adjacent
atoms in the same tier:

Now if n is even, the reversal of J' has the same
trivial effect as a redefinition of the sign of
every other p;. The interpretation of the result
is a little different in that the type of order
which occurs below the transition point is now a
superlattice with the ideal structure indicated
by Fig. 8. However, let us choose an old value
of n. Now a perfect alternation of signs around
the polygon. of n atoms is impossible; in one
place at least the given superlattice must be
adjacent to one of opposite order. As we build
a long crystal on the odd polygonal base, we
build it with one misfit "seam. "The free energy
difference due to this seam will equal that of a
boundary between regions of opposite order.

The formula (93) is still valid, only now

I'/kT= II')IS*)0—

whence

log X,„—2n log (2 sinh 2FI)

=vi+v3+ +v~ i —(~H
~

IS)—
=vi+ v3+ +v2~ i+-', v2~+g —2(

~

H'
~

Ho)—
where

cosh y„=cosh 2II' cosh 2II*

—sinh( —2H') sinh 2H* cos(7r —io„).

The replacement of co; by m. —co„has no appreci-
able effect on the sum; the modification of the
partition function due to the seam is therefore
practically equal to

—2
~

H'I+ 2H".

This represents the effect of a lengthwise
boundary for our original model as well, and
we obtain

o'/kT= —log Xi'= 2(IS' H*), —
(122a)

o.'=2J' kT log coth(J/kT)—

for the boundary tension o' (per atom) of a
longitudinal boundary. The transverse boundary
tension 0- is similarly given by

o/k T= —log 4 = 2(FS—H'.*). (122b)

+J Z iliPi+&
1

The boundary tensions both vanish at the
critical point, as one should expect. The formulas
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l

Fio. 6. Properties of quadratic crysta1.
Boundary tension o between regions of opposite order.

Speci6c heat C. Ap-
proximate computation of C by Kramers and %'annier.

for the boundary entropies and energies follow

s2'= —d 0'/d T= 2k((H/sinh 2H) +H*),
s2= do/d T—= 2k((IZ/sinh 2H')+II'*),

u2' ——0 '+ Ts2' ——(2/sinh 2H) I+2I',
&o= &r+Ts2=2J+(2/sinh 2II') I'.

(123)

The variation of a. with the temperature for a
quadratic crystal (J=I') is represented graphi-
cally in Fig. 6.

Mean Ordered Length

In a crystal. of moderate width n, we may
expect to find sections of rather well-defined
order similar to that of an infinite crystal, with
occasional transitions to opposite order. The
result (122b) allows an estimate of the "mean
ordered length" $o between such interruptions.
By the general theory of fluctuations

transition point of the infinite crystal; this
maximum will be increased and sharpened with
increasing size of the crystal.

Kramers and Kannier" computed the specific
heats at the transition point successively for
22=1, 2, , 6 (screw arrangement). From the
results they inferred the asymptotic rule that the
height of the maximum increases linearly with

log e. We shall verify this remarkable conjecture.
The maximum of (C/IiI) for a finite crystal

does not occur exactly at the asymptotic critical
point; but the di6'erences in location and magni-
tude are only of the order n ' log n. This order
of accuracy will su%.ce.

To compute the specific heat we substitute the
exact partition function (95) of a 6nite crystal
in (111b),whereby the relations (112) are useful.
The specialization to the critical case

Ig II ' gd 2II+gd 2II
sinh 2II sinh 2II'=1

simplifies the computation in several respects;
the relations

»» &22'=»» 2H'l»n 22~1

are valid in this case. We write the result in the
form

C/Xk = 2II2 sinh' 2—H'+ (H'+ H sinh 2H') '

&(sinh 2H&& —P cosecL(r 2)2r/n—)
~ r=l

+—g $(H'+II sinh 2'')2
Q g—]

X (2 sill h2p —l cotll p2p —l cosech 2'Y2r —1)

—4IIII' sinh 2II' sin' 82„g tanh ~y2„g

+H' sinh 4H' cos 62, 2]. (125)

f2=br, "= expL222(II-H'*)]
= (e2" tanh H')". (124)

Evidently, when n is large enough we have

~o)&n.

The estimate (124) is significant when this
condition is fulfilled.

l,o

iI
i

~

l

I

/
2

The Syeci6c Heat of a Finite Crystal

Since the partition function of a finite crystal
is an analytic function of the temperature, its
specific heat will be finite at all temperatures.
However, a maximum will occur near the

g/(H-H'}

FIG. 7. Specific heats for varying degrees of anisotropy.
J'jJ=1j100; — 7'j7= 1.

{quadratic crystal); ——————J'=0 {linear chain).
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The second su™and, when considered as a
periodicfunctionofthevariableco2, '=(2r —1)~/
2n, has a differential quotient of bounded
variation. Its sum may be replaced accordingly
by the corresponding integral, with an error of
the order n '

~

Ke have purposely split off the first suni

1
5'= —P cosec((r ',—) m—/n)

n r=1

+
+

F&G, 8. Superlattice at low temperatures in crystal foi
which the interaction energy between neighbors of opposite
spin is J)0 lengthwise and —J'&0 transversely.

The corresponding integral diverges. For an
asymptotic estimate of the sum we expand the
cosecants in partial fractions; the result is easily
arranged in the form

4(1 1 1 1 1
Sg= —

i
—+—+. +

m E1 3 2n —1 2n+1 2n+3

1
+ +

4n 1—4N+1 )
2"

=—Q (—)"(P((m+ 1)n+-', ) —P(mn+-,'))
&m=o

whereby

P(z) =—I"(z)/I'(z) =log(z ——,')+0(z-').

to D and II'; neither was such symmetry to be
expected. Interchange of the two leads to the
replacement

log(n/cosh 2H') —&1 go(n/ csoh 2H).

For the case of quadratic symmetry

FI=II'=-', log cot m./8

the coefficient of log n attains a maximum.
We find

C/Nk (2/~)(log cot m/8)'

&&(log n +1 o(g2"'/~)+Cz 'n)-—
=0.4945 log m+0. 1879. (127)

P(-,') = —2 log 2 —Cz,

From the given asymptotic estimate of P(z) The estimate indicated graPhically by Kramers

together with and Wannier" may be described by the equation

C/Nk=0. 48 log n+0.21.

Cz ——0.577 215 665, (Euler's constant)

(2244
log~ ————

~
=log —, (Wallis' product)&1335 r 2'

we obtain

S,=(2/x)(log(8N/~)+Cs)+O(n ')

Substitution of the given estimates in (125)
yields the asymptotic formula for the specific
heat maximum

APPENDIX

We shall deal here with the evaluation of
various integrals which occur in the text. Most
of these can be reduced in straightforward
fashion to complete elliptic integrals; only the
partition function itself is of a type one step
higher than the theta functions, and involves a
little analysis which is not found in textbooks.

1. General Notation

C/Nk (2/~) [sinh 2H(H'+H sinh 2H')'

)&(log m+1 o(g8n/cosh 2H.')+Cz)

+sinh 2H(H' Hsinh 2H')'—
—2(H'sinh 2H)' gd 2H'

—2(Hsinh 2H')'gd 2FIj. (126)

One of the main reasons for setting this
material apart is that the notation must be
specified because there are severa1 systems in

common use. We shall adopt the notation used

by Whitaker and Watson. "
"E.T. Whitaker and G. N. Watson, Modern Analysis

(Cambridge University Press, 1927), fourth edition,
The result is not quite symmetrical with rega«Chapters 20—22. Referred to in the following as WW.
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Theta Functions

= P exp (n'sir) cos 2ns,

~&,(sl r) =6p(e) =8)(e+-,'m. )

expl (n+-,')'~ir] cos(2n+1)e,

2X=6/m" 2''= 6 'm7. ,

k=sin 8=82/6q',
k'=cos 0=84'/6P,

log g = 7rir = —mK'/K.

8„(0); 6„"=6„"(0); (r=2, 3, 4).

Periods, Modulus, Comodulus

Elliptic Integrals of the Second Kind

Ihese involve the following definitions and
relations.

Z(u) =8 '6 '(0 'u)/8 (8 'u),
7r/2

F= (1—k' sin' q) ld p
e p

(1.7)
= ( dn' u du = (—A"/8g&3') s /2,

e p

E(u) =Z(u)+(E/K)u= dn'o dv.
p

Complete Elliptic Integral of the Third Kind

KZ(a)= k'snacnadnasn'u(1.2
p

X (1—k' sn' a sn' u) ' du. (1.8)
We shall only have to deal with "natural"

cases in which —ir is real (not negative);
0(k—1; 0—k'(1. The ratio r of the periods
will be specified when necessary. Tables of log q
are available. "

Jacobian Elli ptic Functions

sn(PPs) = (8g/62) 8g(s)/@4(s),

cn(& 's) = (~ /~ )~ (s)l/~ (e)

dn(832s) = (84/83) 83(s)/64(z),

am u = sin '(sn u) = cos '(cn u).

(1.3)

Elliptic Integrals of the First Kind

d(sn u)/du=en u dn u; etc.
am u

u=F(k, am u) =
0

K(k) = F(k, -', n); K'(k) =K(k').

(1—k' sin' rp) ld rp, (1.6)

~ Four place tables of log g by 5' intervals of the modular
angle are given by E. Jahnke and F. Emde, Tables of
Functions (B. G. Teubner, Leipzig and Berlin, 1933),
second edition, p. 122.

We shall use Glaisher's notation for the quotients
of the Jacobian elliptic functions

scu=sn u/cn u; nd u=1/dn u; etc. (1.4)

The Functional Relations

cn' u+sn' u=dn'u+k' sn' u=1 (1.5)

are important for the unifornsization of certain
algebraic functions.

sin 6'=sn u; sin 5*=k sn u

cos 5'=cn u; cos b*=dn u

tan g'=sinh 2H'= —i snia

cot g = sinh 2H* = —i k sn ia
sec g'=cosh 2H'=cnia

cosec g = cosh 2H* =dn ia.

(2.2a)

2. Uniformizing Substitution

The trigonometric functions of the angles and
sides of a spherical triangle with two fixed parts
can always be expressed in terms of single-valued
functions by a suitable elliptic substitution. The
same is true for hyperbolic (and plane) triangles.
In any case the determination of the modulus is
suggested by the sine proportion.

For the triangle of Fig. 4, with two given sides
2H' and 2H*, the simplest uniformizing substi-
tution depends on which side is longer. For
temperatures below the critical point we choose
the modulus k, the imaginary parameter ia, and
the new variable u as follows

k = ko= sin 00 ——sinh 2I$%inh 2II'
= 1/sinh 2II sinh 2II'(1, '

(2.1a)
am(ia) = am(2iKO'y, ko) = 2iII',

am u=5'.

Then the trigonometric, vis. , hyperbolic functions
of 6*, b', 2'* and 2H' are given by the formulas
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We are using the abbreviation

g'=gd 2H'; g=gd 2II= —,'pr —gd 2H* (2.3)

for the gudermannian angles, which can often
be employed to advantage in numerical compu-
tations.

For temperatures above the critical point the
starred and the primed quantities exchange roles:

k=kp=sm O~p=smh 2H'/smh 2II
=sinh 2H' sinh 2'= &1,

modulus and periods given by

k&'=cos Oi=coth(H'+H*) tanhIH' Hp—
I

=
I
cos(g+g') I/cos(g —g') = (1—ko)i(1+ko),

k~ = sin 0& = 2 (sinh 2H sinh 2II') &/

(1+sinh 2H sinh 2H'),
(3 1)

Zg ——(1+kp)Ep,
Eg' ———,

' (1+kp) Zp' ——Zp'/(1+ kg'),

rg ——pEg /Eg ', r p
——',—r. ——-

am(ia) =am(2iEp'y, kp) =2iH*,

am u= 8*

and explicitly

(2.1b) The parameter

ia& ——2yiZ&' ———',(1+kp) iap

and the variable u~ are given by

(3.2)

sin 5'= k sn u; sin 6*=sn I
cos 6'=dn I; cos 8*=en u

tan g'= sinh 2''= —ik sn ia

cot g=sinh 2II*= —i sn ia

sec g'=cosh 2II'=dn ia

cosec g= cosh 2'*=cn I,.

am(iag, kg) =i(H'+H*),
am(ug, kg) =-,'(B'+5*) (3.3)

(2 2b) and the following relations hold

am(Z, —ia,) =-,'~ —iIa' —H*I,
am(E~ —u, ) =

p pr —p I

8' —8* I,

am(ug+iag) = ', (pr a-) ai—y)

(3.4)

The formulas for co and y are the same in the two
cases. The abbreviation

M=dnia dn I—k cn ia cn u

Here the functions of the double parameter are
of some interest

will be convenient; then

cosh y= (cnia dn u —k dn ia cn u)/M

sinh y = ik" sn—ia/3f
(2.4)—cos pp = (dnia cn u —k cn ia dn u)/M

sin pp=k" sn u/3L

Moreover, when co and y are considered as
functions of u and a

sc(2ia~) = sc(4zyZ~') =i cos (g —g'),

nc(2ia~) =nc(4iyZq') =sin(g —g'),

dc(2$ay) =dc(4'LJEg ) =sin(g+g ).
(3.5)

This substitution shows up the analytic nature
of the parameter through the critical point, and
(2.6) is replaced by a simpler equivalent in (3.4).
Moreover, formulas valid for all temperatures
can be constructed by furnishing a sign for the
comodulus

B(o/Bu =—By/Ba = k "/M,
(2.5)

By/Bu =Bcu/Ba =ik "k sn ia sn u/3L

cot ', (a) iy)—-
= (1+k) sc -,'(u+ia) nd ,'(u+ia)—(2.6),

4. Discussion of the Parameter

k, '= Ikg" [;
(3.6)

k~" ——coth(H'+H*) tanh(H' —II*).
The conformal mapping indicated by (2.5) may

That advantage together with the previous usage
of Krarners and Wannier'0 decided the choice of
elliptic substitution in the text.

3. Alternative Substitution

Khile the substitution given above is preferred
for most purposes, there are certain advantages
to be gained by a Landen transformation to

The imaginary parameter ia given by (2.1)
can. be evaluated as a real elliptic integral of the
first kind. For that purpose we use Jacobi's
imaginary transformation, described by the



LARS ONSAGER

relations

i cs(iu, k) sn(u, k') =cn(iu, k) cn(u, k')

=dn(iu, k) cd(u, k') = 1 (4.1)

and the parameter can be determined by the
formula

am (a p, k p') =am (2yK p', k p') =gd 2Ii' =g',
(4.2)

ap= 2yKp = F(cos Op, g ).
In tables this elliptic integral is often denoted by
F(90' —Oo, g'). Alternative formulas can be
obtained by Landon transformations, whereby
the "elliptic angle" pry is invariant. From (3.4)
and (3.5) we obtain, respectively,

am(a&, cos 0&) = am(2yK&', k&')

=gd(II'+II*), (4.3)

am(2a~, cos O~) = am(4yK~', k~')

= o~ —g+g' (4 4)

One or the other of the two formulas (4.5) and
(4.6) will yield at least 3 significant figures per
term of the theta series. When a table of log g is
available (a table of complete elliptic integrals
will do), it is not necessary to evaluate 8p or 0 ~

explicitly.
As regards the variation of the parameter a

with the temperature, we note first of all that

y =ap/2Kp' =a&/2K)'

is analytic at the critical point. This is evident
from (3.1) and (3.3); the elliptic integrals which
determine a& and E&' are analytic functions of
cos' O~, which has no singularity there. In this
sense the singularities of the various functions
at the critical point are completely described by
the degeneration of the period parallelogram

i/r =K/K'=; (FI'=II*).

For extrenie temperatures, with

Further Landen transformations are best de-
scribed by the quotients of theta functions. The
following are suitable for temperatures not too
far removed from the critical point

tan' -'O2 ——sin Oy

H= J/kT; H'= I'/kT

the asymptotic estimates

lim (2y) =H'/(H+H') =J'/(J+ J').
F=O

lim (2y) = -.,'
(4 7)

= (tan 2g tan 2g') **/cos(g —g'), (4.5a)

(cos Op) r sn(ap, cos 0.)
Bg(2pry (

—4/r) sinh
)
H' H*(—

Bo(2pry
~

4/r) cosh(H'+—Ii*)
=

I
tan l(g+g' —p~) I (4 5b)

V, (4~y ~
4/r)—

(cos 0.)& sn(2ap, cos 0.) =
a4(4~y

~

—4/. )

=»n(g —g')
I
cot(g+") I.

For teniperatures not too close to the critical
point we may take

k ~=sin 0 ~
——tan' -', Op, (4.6a)

can be derived from (2.1).
The parameter is an unsymmetrical function

of II and II'; the nature of the asymmetry is

evident from either of the formulas (4.4) and

(4.5c), which involve the double parameter:
Interchanging the roles of II and II' replaces

y by ~
—y, and the parameter iao is replaced by

its elliptic complement i(Kp' —ap). Thus (2.1a)
and (2.1b) have the counterparts

am(iK' —ia, kp) =am(iKo'(1 —2y), ko)

2iH; (H') Ho)
(4 8)

2iH'* (H' &II*).

and the theta series involved in the following
formula (imaginary argument) will converge
rapidly:

It is evident that if J'(J, we shall have

y&-,', a&~K'; (I'&J) (4.9)

8 ~(prry
~
2r)

ik r sn(—iyK &', k,) =
ia, (~,y ~

2,)

for all temperatures, and in the special case of
quadratic symmetry

y=-', ; a=-', K', (J=J'). (4.10)

~~

~~
~~ ~~

e 'a (Ii') II*)
(4.6b)

tanh H'; (H'&H*). This is the reason why the results for that case
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can be expressed by the complete integrals E(k)
and B(k) alone, as given in the text.

k cni0, cn' n

1 —k' sn'ia sn' u

k cn I,dn'ic sn' I
=k cn vu—

1 —k' sn' ze sn'u

cos 8'dec = 2K(k cn ia k' ds i—a Z(ia) );
(H') II').

The other integrals (113) are treated similarly.
The results are

cos b~d~= —2iK(k sn ia coth 2H*~ ~

—Z(ia) coth 2H'),

f cos 8'des = 2iE(k sn ia —coth 2II'
0 —Z(ia) coth 2II*),

(5.1)

(sin b" sin 8'/sinh y)da&
~ ~

=2(K F)(i/k sn ia)—,

sinh2 2H sin2 6 coth p dM

=sinh' 2H* sin' 8' coth y da) = —2iEZ(ia) .
e 0

The mixed notation is designed to throw the
distinction between the cases (2.2a) and (2.2b)
entirely into the choice of modulus and param-
eter; so that the formulas (5.1) are equally
valid for II'&H* and for II'&H*.

The Z function of imaginary argument which
enters into (5.1) can be expressed in terms of the
tabulated functions of real argument Z(a, k') as

S. Reduction of Integrals

By the substitution (2.2), the integrals of (113)
in the text are readily evaluated as complete
elliptic integrals. For example,

f

ear
2Ã

cos 8'des = k" cn u(dn ia dn u
0 0

—k cn ia cn u) ' du (H' )H")

If we replace I by 2E —I, the sign of cn u is
changed; that of dn u is preserved. Accordingly,
that part of the integrand which is odd with
regard to cn u may be omitted, which yields

follows:

Z(iu, k) =dn(iu, k) sc(iu, k)

i—Z(u, k') i—(su/2KE') .(5.2)

For substitution in (113) it is convenient to make
use of the function

Z(iK ia—) = —dn ia cs ia —i(7r/2K) Z—(ia) (5.3)

together with Z{ia); this leads to more sym-
metrical formulas. The connection between the
corresponding functions of real argument is

Z(a, k')+Z(E' —a, k')

=k"(—i) scia ndia (5.4).
6. Derived Thermodynamic Functions

In assembling the terms of the formula (113a)
for the energy it is best to deal with the cases
II'&H* and 11'&II*separately. The results are

U= NJ'(8 log X—/BH')
—XJ(8 log X/BH), (6.1a)

r3 log X/BII'= coth 2II'(2y+ {2K/s)Z(2yE', k')),
II' )H~ (6.1b)

8 log X/OH= coth 2H
( )

&&(1—2y+(2E/x)Z((1 —2y)E' k'))

valid for temperatures below the critical point;
above the critical point we have instead

8 log X/BH'=coth 2H'

X (2y —(2K/x)Z((1 —2y)K', k'))
H' (II* . (6.1c)

8 log X/BH=coth 2II ( )

&& (1—2y —(2K/x)Z(2yE', k'))

The energy is continuous at the critical point
because, when u is real Lcf. (5.4)j

O=Z(u, k') =1—k.

C 4P ( H'
iKZ(ia)—]Xk &sinh 2H')

( H
FEZ{iK' ia)~—

L, sinh 2H)

( snia
+ 2(E—Z) ]

(HII' j.
4i slnh 2H J

For the specific heat we obtain from (113b)
and (5.1), in mixed notation valid for all temper-
atures
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Every term is positive. The specific heat is

infinite at the critical point, where k=1. This is

caused by the factor K; the general case is

substantially like the special case of quadratic
symmetry treated in the text.

'7. The Partition Function

conditions for development in partial fractions
qua function of cos(zru/K). The residues (7.3)
together with the condition

C (K)+C (K+iK') =k"—k"=0

suffice to determine the expansion

(zr )z(
To compute the partition function (106) in C'(u) =

I
—

I I
1 —8 E (—)"n

terms of ~ and y we first differentiate under the
&2K)

integral sign
X

(q" cos(zru/K) —q'")
(7 4)

(1—2q" cos(zru/K) +q'") )2K ( Bp BM C2M

md~=
I I

————v
Ba p I) p 4 Ba Bu BaBu) The integration required by (7.1) is readily

performed, and the formula (106) of the text
Integration by parts yields with the aid of (2.5)

f
By B(o Bp Bco)

I

———+——ldu
e 0 4 BaBu BuBQ)

2K ( (By) 2 (By/ 2)
=

I I I

—
I + I

—
I ldu

~ 0 E EBa) EBu) )
'x / dn' ia dn' u+ 0' cn' ia cn'- u)

—

I
dzz.

&p ( 1 —k'sn' jg sn'~ )

The integral is easily evaluated; then considering
that

y(0, u) = cosh '(1) =0

for a=0, we have

a

yd(a=2K C(iu)du, (7.1)
e p ~ p

4 (u) = 2 dn' u —k"—2 dn u cs u Z(u)

The function 4 (u) is even and periodic with the
period 2X. Its singularities are poles at the points

u=2mK+niK'; (m, n integers; n/0)

Jacobi's imaginary transformation (4.1), (5.2)
yields

1
=log X=-,' log(2 sinh 2H)+ yd—s&

NkT 2zr.J g

= -', log (2 sinh 2H) —-'„.y log q

00 ( 1 qn+zy)—P ( —).n log I l. (7.5)
(1—q" '&)

Specialization to the case y = ~ yields the formula

(119a) of the text, where qP=q.
The series of (7.5) converges rapidly except in

the immediate neighborhood of the critical point.
To obtain an expansion suitable for computation
in that region we note from (7.2) that

I (iu) —(zru/2KK')i csiu dn iu

=2dc(u, k') ns(u, k')Z(u, k') —k'-"

is a periodic function of I with the real period
2E'. Its Fourier series is easily derived with the
aid of the identity

K(2 dc a ns a Z(a) —k')

K

k (sn(u a") sn(u—+a) —cn(u —a) cn(u+a))du
0

from those of the Jacobian elliptic functions. "
The result is4 (iu) = —k"+dc(u, k') ns(u, k')

X (2Z(u, k')+ (zru/KK')). (7.2)

( zr &
' " cos((2n+1)zru/K')

=2I —,I 2 .&K') =o sinh'((2n+1)zrK/K')R(2mK+niK') =R(niK') = ( )"nzri/K (7.3—).
It is easily seen that C(u) satisfies the standard "W&V, reference 19, 22.6.

7rQI (iu) — i cs iu dni u
Accordingly, the poles of 4 (u) are simple; the 2''
residues are
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Moreover, "
0u csiu dn iu ——(u log( —ikl sn 0u))

dQ

= —log(kl sc(u, k')) = log cot(iru/2E')

8. Critical Data

j.he transrtion temperature is given by the
condition

sinh 2II sinh 2H'

=sinh(2J/kT) sinh(2J'/O'I') =1; (I'= T,). (8.1)" 2s ""+" ' ' cos((2m+1)iru/Z')+2
(2n+1) sinh((2n+1) irX/X') Then

E—~ E' —-'x
2v=o;

(8.2)
xy =a=gal 2II'=-,'x —gd 2II.

The formula (6.1) for the energy becomes

Termwise integration of the Fourier series yields
the alternative expansion for the partition
function

I'/NkT =—log X = -,' log(2 sinh 2')
X+— 4(0u)du=y log(2 sinh 2H')
7rso

U.= —(2/ )ir(N I' gd 2H' coth 2H'

+NJ gd 2H'coth 2H) (8.3)

and the formula (7.6) for the partition function
simplifies to

I/ NkT=l os.=-', log 2+(-,' —2y) log cot iry+(s—S) log('2 sioh 2El)+2f log ooS ( s)ds

The formula (119b) of the text is obtained by
specialization to the ease II'=II; y=~, with
7 =2~» whereby ) ( )

where

X log(4/k') —,
' [log(4T/

~
T T,

~

)—
log(H—coth 2H+H' coth 2II') tf

v/4

log cot x dx= 1 2 —3 ~+$ 2 —7 2+ ~ ~ ~ =6

+2 t log cot irsds. (8.4)
1 " (1+(4n+2) (0ri/r) exp[—(4m+—2)0r0/r])+—Z
& os=0 (2N+ 1)' »nh'((2++ 1)&0/&) The specific heat becomes infinite; the approxi-

(y 6) lllate foilllula

C/Nk (4/ir) (Z(IX+H' sinh 2H)' sinh 2''
—IP slnh2 2II gQ 2'—2IIII

—H" sinh'2H d 2H' 8.5

'2 KW, reference 19, 22.5, example 3. is valid for temperatures near the critical point.


