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The Bloch integral equation and electrical conductivity 
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Revised 11 April 1950) 

An account is given of the solution, for effectively the whole temperature range, of the Bloch 
(1928) integral equation for the electron momentum distribution in a metal in an electric 
field. Solutions of this equation, from which the temperature variation of the electrical 
conductivity of the metal may be immediately calculated, have previously been obtained 
only in the limiting cases of 'high- and low-temperatures', corresponding to (TIOD)>1 and 
< 1, where OD is the Debye characteristic temperature. 

As a preliminary to its solution by numerical methods the integral equation is expressed in 
a non-dimensional form (? 2). Solutions are obtained by deriving a high-temperature 
approximation which is valid over a much wider temperature range than that previously 
known, and by means of a method of successive approximations (? 3). The temperature 
variation of conductivity is calculated from these solutions, and it is shown that there are 
significant differences between the results and those obtained from the semi-empirical formula 
of Griineisen (I930) (?4). 

A comparison is made between the calculated and observed temperature variation of 
conductivity for a number of metals. There are deviations in detail, and a brief discussion is 
given of secondary factors from which they may arise, but in general the agreement is good, 
and it is concluded that the theoretical treatment covers satisfactorily the main features of 
the observed variation (? 5). 

In an appendix it is shown that the approximate relations obtainable by the variational 
method developed by Kohler (I949) are consistent with the more exact results obtained here. 
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1. INTRODUCTION 

The theoretical treatment of the electrical conductivity of metals, developed by 
Bloch (I928, I930), leads to an integral equation for the electron momentum dis- 
tribution in a metal in an electric field. The temperature variation of conductivity 
may be estimated directly from the solution of this equation. Up to the present,t 
however, the Bloch integral equation, or transport equation as it is sometimes called, 
has been solved only for the special cases of 'high- and low-temperatures', corre- 
sponding to (TIOD)> 1 and < 1, where SD is the Debye characteristic temperature of 
the metal. In this paper consideration is given to the solution of the transport 
equation for intermediate temperatures, and so to the estimation of the temperature 
variation of electrical conductivity over effectively the whole temperature range. 

A number of simplifying assumptions are made in the Bloch treatment, and in 
order to test its applicability to actual metals it is desirable to make as detailed 
a comparison as possible with experimental results. At high temperatures the 
theoretical treatment may require modification to take into account the an- 
harmonicity of the lattice vibrations and the effects of thermal expansion; at low 
temperatures the 'residual' resistance due to impurities and strains may be relatively 
large, and a large, and uncertain, 'correction' may be required to determine the 
'ideal' resistance from that observed. Consequently it is at intermediate temperatures 
that comparison between theory and experiment would be most significant. 

Solution of the transport equation by numerical methods, such as those adopted 
here, is necessarily carried out for particular values of the parameters involved. By 
considering the physical significance of these parameters, however, it is possible to 
select values for them which are appropriate to a wide range of actual metals, and to 
solve the equation for intermediate temperatures for these values (? 3). The associated 
temperature variation of conductivity may then be calculated (? 4) and compared 
with the experimental results (? 5). 

Full accounts of the theoretical treatment of electrical conductivity, based largely 
on Bloch's original papers, are given by Brillouin (I93I ), Sommerfeld & Bethe (I933), 

Wilson (I936) and others, and it is unnecessary to go over the long arguments in 
detail here; but a brief outline of the treatment is essential to introduce the various 
quantities involved (? 2). Reference may also be made to the simplified treatment 
given by Mott & Jones (I936), which shows in a very direct way the relation between 
conductivity and temperature; since this treatment is valid only at high temperatures, 
however, it is not considered in detail here. 

2. THE BLOCH TREATMENT OF ELECTRICAL CONDUCTIVITY 

In the absence of an applied field the distribution of the electrons in a metal among 
the available momentum states is determined by the equilibrium, Fermi-Dirac, 
distribution function -1 

fo(k) =fo(e) = fexp(-,7 ) +?1, (2.1) 

t After this paper had been completed a paper by Kohler (1949) dealing with the solution 
of the Bloch integral equation became available; its relation to the present paper is considered 
in an appendix. 

30-2 
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where k is the electron wave-vector, and e and C are respectively the energy and 
chemical potential per electron. In an applied field the distribution is modified by 
the field and by 'collisions'. In an electric field parallel to the x-axis the steady-state, 
non-equilibrium, distribution function, f (k), may be expressed in the form (Wilson 
1936, pp. 204, 206) 

f(k) = fo(k)- kx() dfo (2.2) 

where kx is the x-component of k, and at(e) is a function to be determined. 
Since the steady-state distribution function is independent of time it satisfies the 

Boltzmann equation 
df _ + kaC.-0. (2.3) 

dt at fed at dt (tfield 8) Coll.(23 

To obtain an explicit equation for f from (2.3), expressions are required for 
(af!at)field and (aflat),oll in terms of f. A general expression for (af!at)field may be 
readily obtained (see, for example, Wilson I936, p. 63). For (af/lt)co11 the problem 
is much more complicated, and the approximate expressions derivable are dependent 
on the particular collision mechanism presumed to be involved. In the treatment of 
'collisions' associated with thermal lattice vibrations, the case considered here, two 
different simplifying assumptions have been adopted (Bloch I928, cf. Sommerfeld 
& Bethe I933; Nordheim I931, cf. Wilson I936). Both approximations lead to 
formally similar results; the essential difference lies in the physical significance of a 
function, depending on the potential field of the lattice ions and on the electron wave- 
functions, and usually denoted by C, which occurs in the final expression for (af!at)Coll. 
As will be seen later, the two treatments lead to the same calculated temperature 
variation of conductivity, though the calculated absolute values would be different. 

In deriving the expression for (aflat),011 it is also assumed that the relation between 
electron energy, e, and wave-vector, k, is of the form 

h2 
C 87r2mn* t k 2, (2.4) 

corresponding to electrons of effective mass m* distributed in a single band of 
standard form. 

The final expression for (8f/lt),ojj is an integral involving the function ,u, and by 
combining this with (2.3) and the expression for (Wf/at)field the Bloch integral 
equation for It (and hence for f) may be obtained in the forms given by Sommerfeld 
& Bethe (1933, p. 521, equation (35.19)) and Wilson (I936, p. 215, equation (345); 
the present case corresponds to the inclusion of only the first term on the left-hand 
side of that equation). In order to bring out more clearly the dimensional character 
of the various functions involved the Bloch equation may be conveniently re- 
expressed in the following non-dimensional form: 

Xi= f{'(z)-T(-z)}dz, (2 5) 
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where 'F(Z) = z2e+ )PZ2 (x(t- 
(Ih)(1e-) (eg+z + 1) 2r-y 

4(E ? z) = la(e + kTz)/{bMkOD(h/m*C)2 yteF}; 

6= (e -)/kT =x-y; 

Y = DT; z = hv/kT; (2.6) 

r = eo/kOD = OFI0D; p = (2q2)j; 

X 
P 6 _ 

(P 
T 

+ X r kT =Ye+ ry) 

l/b= 3(2j7T)3. 

In these equations the symbols have the following significance: F, applied field; 
- e, electron charge; M, mass of atom; v, frequency of lattice vibration; 0D, Debye 
characteristic temperature; eo, Fermi zero energy; q, number of electrons per atom 
outside full bands. The function C, which is assumed to be independent of electron 
energy and of temperature, may be taken as equal to that given by Wilson (I936, 

p. 201) or, apart from a numerical factor of 3, that given by Sommerfeld & Bethe 
(I933, p. 513). In the derivation of (2.5) use has been made of the relation between 

co and the number of electrons per unit volume, n (see Stoner I939, p. 267): 

h2 /3n h 2 (3q 
(5? = 8h *(n -8h () (2-7) 68m* n7T 8m*a 2 (27 

where a3- volume of atomic cell. 
The electric current density associated with the steady-state distribution (2.2) is 

JX - (e/4nT3) vxfdkxdk1 dk. 

ef2n Iae\ dfo 
47T3J h ak) kx (x ) T dkXdkYdkz 

which with (2.4) may be expressed as 

= l=6T2(2dn*)eej cc ,u(e)feLod. (2.8) 

Using this expression and (2.6), (2.7) the conductivity, o, is given by 

C = JF = fxy X (2.9) 

where { = {MhkODe2}/{6a3(nrM*C)2j. 

In order to calculate the absolute conductivity from (2-9) it would be necessary to 
determine the function C, while to calculate the temperature variation of conductivity 
it is sufficient to solve the transport equation, (2.5), for p(g) for a range of values of y. 

High-temperature approximation 

Bloch (I928) obtained a solution of (2.5) for y<< 1 effectively by takilng the first 
term in a Taylor series expansion of qS(6 ? z) and the first term in the expansion of the 
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remainder of the integrand in ascending powers of z. The right-hand side of (2 5) then 
involves the function 5b only in the form 0b(6), and (2.5) is reduced from an integral 
equation to a linear algebraic equation. Neglecting the small terms + (pz/2r) (cf. ? 3), 
the solution of this equation is given by 

0(6) = - 2Xy/y3. (2.10) 

The corresponding value of the conductivity from (2.9) is 

2c = X , fo d6. (2.11) 

The Fermi-Dirac integral in this expression cannot be evaluated analytically, but 
since in many metals the conduction electrons form a highly degenerate 'electron 
gas' at ordinary temperatures it is sufficient to use the first term in the 'low- 
temperature' approximation to the integral. From (2 6), (2.11) and the Fermi-Dirac 
approximation, C- = 2a(py)3/y2 = 4xq2y. (2.12) 

This expression indicates that the conductivity at high temperatures varies inversely 
as the absolute temperature, corresponding to a specific resistance, PT = 1/o-, pro- 
portional to T. Rough calculations show that this relationship is not appreciably 
affected by using more exact values for the Fermi-Dirac integral in (2.11) provided 

(TIOF) < 0 1. 
Low-temperature approximation 

Accounts of the method used by Bloch (I930) to obtain an approximate solution 
of (2.5) for y> 1 have been given by Sommerfeld & Bethe (I933, p. 526), Wilson 
(I936, p. 212) and others. The method is also discussed in ? 3, and it will suffice here 
to quote the expression obtained for the conductivity, 

a2 
CJ_ q -y 5 (2.13) 

where ~(5) is a Riemann function. Equation (2.13) indicates a variation of specific 
resistance, PT, with T5. 

3. SOLUTION OF THE TRANSPORT EQUATION FOR INTERMEDIATE TEMPERATURES 

Two methods of obtaining solutions of the transport equation for intermediate 
temperatures are considered in this section. First, a modified form of high-tem- 
perature solutioni, valid over a much wider temperature range than that previously 
given, is obtained. Secondly, a numerical method of successive approximations for 
testing the validity of the new first approximation and for obtaining higher approxi- 
mations is described. For both of these the expression of the transport equation in 
the non-dimensional form, (2.5), introduced in ? 2 was an essential preliminary. 

Numerical values of parameters 

Equation (2.5) contains parameters, 6, y, z, which are reduced variables appropriate 
to any metal, and others, p and r, which may be regarded as specifying a particular 
metal. The function X depends upon both kinds of parameter and upon C and ec. 
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As (2.5) is to be solved numerically, it is desirable to select values of p and r which 
will give the solution as wide a range of applicability as possible. 

For metals in which the electrons satisfy the degeneracy criterion, (kT/e0) < 1, 
( is closely equal to e0, and it is sufficiently accurate to express X (cf. (2 6)) as 

X=PY{l+!}3.1 
ry (3.1) 

In order to deal with electrons in a narrow band, i.e. for which 60 is comparable with 
kT, it would be necessary to take into account the dependence of C on T. This would 
not involve any insuperable difficulty, since Stoner (I939) has given numerical tables 
and series expressions which show the dependence of C on T for effectively the whole 
temperature range, but in what follows X is taken to be of the form (3a 1) so as to avoid 
an inessential complication of the central problem. 

The number of electrons per atom, q, outside full bands, which determines p (cf. 
(2.6)), is taken as equal to unity, so that the results are immediately applicable to the 
alkali and noble metals (cf. ?4). 

TABLE 1. DEBYE TEMPERATURES, ESTIMATED FERMI-DIRAC CHARACTERISTIC 

TEMPERATURES AND RELATED DATA FOR REPRESENTATIVE METALS 

A, atomic weight; 
d, density, g.cm.-3; 

OD, Debye characteristic temperature; 
OF, Fermi-Dirac characteristic temperature, eo/k (see equation (3.2)); 
r =OFOD- 

A d OD 6FX10-4 rxlO-2 

Li 6 94 0 534 (400) 5X46 (1.36) 
Na 23-00 0 97 (150) 3.66 (2.44) 
K 39 10 0.86 100 2.37 2.37 
Rb 85-48 1.52 (70) 2.06 (2.94) 
Cs 132-91 1.87 (50) 1.76 (3.52) 
Cu 63-57 8493 315 8 15 2-59 
Ag 107-88 10 50 215 6.38 2.97 
Au 197.2 19.3 170 6.41 3.77 

In table 1 values of r, equal to 0F/0D, and of the data used in estimating 0F, are 
given for some representative metals. The Debye temperatures, OD, are from Borelius 
(I935, p. 252) and Seitz (I940, P. 110). Values enclosed in brackets are less certain 
than the others. The Fermi-Dirac characteristic temperatures, OF, have been 
determined from (2 7), which, for electrons to the number q per atom in a metal of 
density d, atomic weight A, may be written (cf. Stoner I939, p. 279) 

F= eo/k= 3017 x 105(M/M*) (qd/A)*, (3.2) 

using the Birge (I 94 ) values of the fundamental constants. The values are calculated 
for q = 1, m* = m. Values of A and d are from standard tables. 

The values of r in table 1 are all of the same order of magnitude, and much greater 
than unity, the mean value being 2 74 x 102. As will be seen later, the solution of 
(2 5) for r? 1 does not depend critically upon r. A value of r = 3 x 102 is adopted in 
the numerical work. This value is sufficiently close to all those listed in table 1 for 
the results of the calculations to be directly applicable to at least all those metals. 
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Strictly, 0(6) is to be determined from (2.5) for all values of 6 from - y to oo 
(corresponding to values of c from 0 to oo), but it can be seen from (2.9) that in order 
to calculate the conductivity accurately it is necessary to obtain 5(g) accurately only 
for a limited range of values of 6. From (2-1), (2.6), 

dfo _ 1 33 
d- (e+ 1)(e-+1) (3 3) 

so I dfo/d6, decreases exponentially for large values of . Consequently the only 
appreciable contribution to the integral in (2.9) comes from the region of small 
values of 16 1; I dfo/d6j decreases to 1 % of its value at 6 = 0 when 16 I 6. In order 
to obtain an accurate value of o it is sufficient therefore to obtain a solution of (2.5) 
of comparable accuracy only for small values of 16 1; for larger values of 161 a lower 
degree of accuracy in the values of 05(6) is adequate. 

First approximation 

Using the Taylor series expansion for q( ? z) in (2.5), the part of the integrand 
involving 0 becomes 

pz Z2 (( pZ Z2y ,(6) eo y)_ 

where a dash denotes differentiation with respect to 6. Examination of (2.5) suggests 
that a modified high-temperature solution, valid over a wider range of y, may be 
obtained by neglecting 5iY, q/", ... and the small terms ? (pz/2r), but leaving the 
remainder of the integrand unaltered. The tentative new first approximation to 

0(6), say q561(), is then 01( = YX6/I(6z ) (3.4) 

where I(a, y) = (er + 1 rf etoz {eaminaei+ n (3f 5)5 sugge 

Values of I(e, y), determined by numerical integration and by series expansion, 
are shown in figure 1 in the reduced form I(a,t )/I(O,pz) for bu= 1,l2,3,5. The 
corresponding asymptotic values, determined from 

fYJz 4(eZ+1)z 

w(hr,y) = ez = (e 1)- (3.5a) 

are also shown. 
For y < 1, expansion of the integrand of (3.5) in ascending powers of z and term-by- 

term integration gives 

Substituting the first term of this series for I in (3.4), the expression for 01 becomes 
the same aJs the previously known high-temperature approximation, (2.10), which is 
thus a special case of (3.4) for y2 4 1. For larger values of y it is not possible to 
estimate a priori the error introduced in (3 4) by the neglect of y', = .. The most 
direct method of determining the range of validity of (3r4) is to substitute m1 (6) in 
(2.5) and to test whether or not that equation is satisfied. The details of this method 
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may best be considered in conjunction with the discussion of the method of successive 
approximations used to obtain higher approximations in the temperature range for 
which 0 is not sufficiently accurate. 

4 

3 / 
5 

( 2 3 4 5 

FIGuRE 1. The reduced function I(6, y)/I(O, y); see equation (3.5). The figures on the curves 
give the values of y. The values of 1(0, y) for y= 1, 2, 3, 5 are 0 4490, 5-376, 18415, 54.15 
respectively. The broken lines show the values of I(oo, y)/I(O, y) for y = 1, 2, 3 calculated 
from (3.5 a); the corresponding value for y=5 is 12-07. 

Solution by successive approximations 

The method of successive approximations adopted may be indicated by rewriting 
(2-5) in the form 

v 

XK(6, y) b,,+1 (6) X-- + {F(z) - F(- z)} dz, (3.6) 

where F ((z) = 1)e %+ -_ ( y)V(6+) (3.7) 

and K(6, y) is of the same form as I(6, y), (35), but with the factor Z4 in the integrand 
replaced by Z2. The subscripts to the sb's have been added in (3-6), (3-7) for convenience 
in discussing the method of successive approximations. The 'solution' of (3 6) is to 
be understood to mean the solution, 55(g), of the equation obtained by omitting the 
subscripts. 

If a particular function qv is a solution of (3.6) then obviously the function Ov+1, 
obtained by inserting q, in the right-hand side, will be equal to q,. This test for 
consistency provides a check on any approximate solution which may be obtained. 
In the present connexion, agreement to within 1 0 between 0q+1 and 0, was regarded 
as sufficient, and this condition need be satisfied only for small values of j l, up to 
5 say, since the main contribution to the integral in the expression for the conductivity, 
(2.9), arises from such values of 6. 

In order to obtain higher approximations in the range of y values for which q1 does 
not satisfy the consistency condition the following method has been used. Values of 
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O 2 are determined from (3.6) in the process of checking 01, and values of 03 are 
determined in the same way from O2. If 03 agrees with q2 to within the required 
accuracy for the relevant values of 6, then j2 is a satisfactory solution; if not, the 
process is repeated until a function, q0, is obtained such that 0,b+1 agrees with 0, to 
within the required limits. In practice this procedure involves extensive com- 
putational work, since, for each value of y, numerical integration of the integral on 
the right-hand side of (3.6) gives a value of q,,+1 for only one value of 6, and com- 
putation of 0q+2 from 0q+1 requires 0q+1 for a whole range of values of 6. 

Examination of (3.6) indicates that the solution is such that S(- 6) is approxi- 
mately equal to 0b(6). In obtaining successive approximations it was assumed that 
0, is an even function at all stages. The final approximation was then tested for 
consistency in (3 6) for both negative and positive values of 6, and in all cases it was 
found that the final value of OJ+1(- 6) agreed to within 1 %0 with O,J,+) This con- 
siderably reduced the necessary computation. 

From (3 4), (3-1), qS1 may be written as 

01(g) 
- (p3y5)l {1 + (6/ry)}j (3-8) 

For small values of 6, and values of y of order unity, (6/ry) < 1. Consequently from 
(3.8) q5, qS', ... are determined largely by the corresponding differential coefficients 
of I. Further, the method of derivation indicates that 51, is a good approximation 
to 0 if qS', qS", ... are small compared with 5b. The function q51 may therefore be 
expected to be a good approximation to the solution of (3.6) if the differential 
coefficients of I with respect to 6 are small compared with I. The rate of change of 
I with 6 increases with y (cf. figure 1), so if qS1 is a satisfactory approximation for 
a particular value of y it may be concluded that it is also satisfactory for smaller 
values of y. 

For y = 1 it is found that q51 is a sufficiently accurate approximation, since b2 
agrees with q1 to within 1 %0 for 161 < 5. For y = 2 higher approximations are 
required. In order to determine the largest value of y for which qS1 is a sufficiently 
accurate solution it would be necessary to test the validity of this solution for 
a number of values of y in the range 1 to 2. This is unnecessary, however, since in the 
calculation of the conductivity associated with qS it is found that for y < 2 it is 
sufficient to consider only q51 (see ? 4). 

Detailed application of the method of successive approximations has been 
restricted toy = 2, 3, 5 (cf. ?? 4, 5). The shape of the curves representing the successive 
approximations are similar for all these values of y, but more approximations are 
required as y increases. In illustration the successive approximations, 0, to the 
solution of (3.6) for y = 5 are shown in figure 2. The curve showing 04, which lies 
between those for O4 .5, has been omitted for clarity. The values of 06, indicated by 
circles, agree to within 1 %0 with the corresponding values of O5, which is taken as the 
final approximation. 

For y = 2 and 3 it is the second and third approximations, respectively, which 
constitute sufficiently accurate approximations to the solution of (3.6). In what 
follows it will be convenient to denote this final approximation in each case by 0. 
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0 0 s , - I -r I -- l I l I l I 

2 2 

05 - 

1 58 6 4 2 0 2 4 6 8 
g 

FIGURE 2. Successive approximations to the solution, b(6), of the transport equation for 
y = 5; see equation (3 6). The numbers on the curves denote the stage of approximation, v. 
The circles show the values of 06 (g). 

Orthogonality condition 
A further check on the solutions of the transport equation has been made by a 

method which is essentially an adaptation of that used by Bloch (I930) to obtain an 
approximate solution for low temperatures. 

Multiplying by dfo/dE, equation (2.5) may be rewritten as 

y ~~~~~d 
f {G(z) -G(-z)}dz= -x_ o+ f{H(z) -H( -z)}dz, (39) 

G(z)w - z2{q!( +z)- H) - Hz5(+ z) (3.10) 
(e-6 + 1) (1e-0) (eg+z + 1)' %(e-6 + 1) (1 -e-z) (eE+z + 1)' 

Since (3 '9) is satisfied for all values of 6 from - y to + oo, the integral of the left-hand 
side with respect to 6 over this range is equal to the corresponding integral of the 
right-hand side. Further, since q> 1, and all three terms of (3 9) decrease exponentially 
for large values of I 6 1, the lower limit of the integration with respect to 6 may be 
replaced by - oo. The integral of the left-hand side is then zero. Consequently the 
integral of the right-hand side is also zero, that is, 

f ,X xjdfr f d df{H(z) -H( - z)} dz. (3/11) 
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This equation represents essentially the orthogonality condition which is satisfied if 
the inhomogeneous integral equation (3-9) has a finite solution (cf. Brillouin I93I, 
p. 374; Courant & Hilbert I924, p. 102). 

Substituting for x from (3.1), noting that j dfo/d6 decreases exponentially for 
large values of j6 j, and that (ry) > 1, the left-hand side of (3 11) may be evaluated 
approximately as - (py)l. Evaluation of the right-hand side in terms of an approxi- 
mation to 0 then provides a check on that approximation. Using the final approxima- 
tions to 0 it is found in all the cases considered that the right-hand side of (3-11), 
evaluated by numerical integration, agrees to within 1 % with the left-hand side. The 
integration over 6 from - oo to + oo may be carried out without undue difficulty, 
since the value of the integral over z decreases rapidly as 161 increases. 

Low-temperature approximation. The right-hand side of (3.9) decreases as y 
increases, and to obtain the low-temperature approximation (corresponding to y > 1) 
the left-hand side is equated to zero. The solution of this equation is q (6) = con- 
stant, and the value of the constant is determined by (3-11). Assuming x to be 
constant at the value corresponding to 6 = 0, integration with respect to 6 in (311) 
gives (cf. Wilson 1936, p. 213) 

(l 
2J5' (3.12) 

2z5d 

where J5 =J(z 5)(1z) (3.13) 

Since the derivation of (3.12) is valid only for y> 1, the upper limit of the integral 
in (3-13) may be replaced by oo, and J5 evaluated as 5 ! ~(5). With this value of J5, 

equation (3-12) with (2-9) and the Fermi-Dirac approximation gives the low- 
temperature approximate expression for o quoted in ? 2. 

4. CALCULATION OF CONDUCTIVITY 

The conductivity, o, may be expressed from (2.9), (3 1) in the reduced form 

'= = yiJb (1 +r (6) . d6' (4.1) 

where = pax. (4.2) 

For a given metal ,8 is a constant, and in particular is independent of temperature. 
From (3.3), I dfo/d I' decreases exponentially for 161> 1; further, y> 1, (ry)> 1. 
Consequently, (4.1) may be written, to a sufficient approximation, as 

5 f 
(6dfod6+_ 6?Nj(6) -d6. (4.3) 

- 0 dE 2ry -0 d 

Now, as indicated in ? 3, 0(6) is, to within the required accuracy, an even function of 
s, and df0/d6 is also an even function (cf. (3.3)), so (4.3) may be reduced to 

- = Y () d6. (4.4) 
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For convenience in evaluating the integral in (4-4) the range of integration may be 
divided into two parts: 6 = 0 to 5, and 6 = 5 to oo. The contribution to the integral 
from the first part may be determined by numerical integration using the final 
approximations to 0. The contribution from the second part is relatively small, and 

,O may be replaced by a constant value, say 0, limits to which are determined by 
01 (5) > 5c > 0(5). This part of the integral is then given by 

| (6) dfod6 -C/ W + 1). (4.5) 

For small values of 1I, I <1 v,and for large values, i 0 1 > I 1 1 (see figure 2). 
This relation between 01 and b, which is general, and which applies not only to y = a, 
suggests, in conjunction with (4 4), that for the smaller values of y, for which 0 does 
not differ greatly from 01, the value of o' may be approximately the same when 
calculated from 01 as when calculated from 0. For y = 2 the two values of o' 
calculated in this way agree to within 1 %. For y = 3 and 5 the values calculated with 

01 are greater than those calculated with 0 by about 4 and 16 % respectively. It may 
be concluded that for y < 2 it is sufficiently accurate in calculating O-' to replace 0 by 

01 in (4 4). 
Values of o' have been calculated from (4 4) for y = 0-5(0-1) 2, 3,5, using the values 

of 0 and 0S1 determined as described in ? 3. By interpolation in the o', y table values 
of o' have been determined for TIOD = l/y = 0.2(0.1) P0, 1*2(0-2) 2-0. The results 
are shown in table 2 in the reduced form o1/Io = pTIpo, where PT po are the specific 
electrical resistance at T?K, O' K, respectively. This reduced form is convenient 
for comparison with experimental results. Values shown in brackets are somewhat 
less certain than the others owing to the difficulty of interpolation. 

Table 2 also contains values of (T5/p0) (PT/T5)o and (T/po) (PTIT),, where (PTIT5)o 
and (PT!T),, are limiting values corresponding to (TIOD) -- 0 and (TIOD) -- 00, 

respectively (cf. equations (2.13), (2.12)). It may be noted that although the values 
of (T5/p0) (PTIT5)0 and (TIpo) (pT/T)oo correspond to the low- and high-temperature 
approximations they could not be obtained from those alone, since neither of the 
approximations is valid at T = OD, and so pa could not be determined from them. 

The values shown in table 2 are considered in relation to the experimental results 
in ? 5. Although values of PT/PO cannot be determined accurately from the table for 
0-2 > (TIOD) > 0*05, the values given show the temperature variation of resistance 
over practically the whole of the temperature range of particular interest (cf. ? 1, and 
figures 3 and 4). 

The values of (PT/PO)a in table 2 are from the semi-empirical formula suggested by 
Gruneisen (I930), which may be expressed in the form 

(PAT)a(DT) J5( OD!T) (4.6) 
.T. D J5(1) 

where J5(OD/T) is given by (3 13). Tables of values of J5 are given by Griineisen (I 9)3 3) . 
Equation (4.6) may be obtained bv assuming that the approximate expression for 
the conductivity derived from (3.12) is valid over the whole temperature range. The 
derivation of (3-12) provides no justification for this assumption. Although (4.6) 
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reduces to the theoretical approximations for y>I1 and < 1, for intermediate 
temperatures it can only be regarded as an empirical interpolation formula. The 
Gruneisen values agree with the calculated values to within 1 % for (TIOD) > 07 and 
< 0 05, but for temperatures between these limits there are significant differences 
(see table 2). 

TABLE 2. SPECIFIC ELECTRICAL RESISTANCE AS A FUNCTION OF 

TEMPERATURE 

PT, PO, calculated specific resistance at T' K, OD'K; 
(pT/T5)o, value from the low-temperature approximation (see equation (2.13)); 
(pT/T)oo, value from the high-temperature approximation (see equation (2-12)); 
(PT/PO)G, values from Griineisen's (I933) semi-empirical formula (see equation (4.6)); 
OD, Debye characteristic temperature. 

T PTF T5(PT/T5)0 T(PT/T)O (PT) 

OD PO PA PA PO G 

0 05 - 0000 1646 - 0.000 164a 
0 10 0 005 27 - 0004 92 
015 0 040 01 - 0*026 62 
0.2 0060 2 0-168 6 0*212 0*068 0 
0-3 (0 169) - 0318 0O181 2 
0333 0-2105- 0-353 0-222 1 
0-4 (0.295) - 0-4235 0 304 5 
0*5 0-419 0529 0*426 5 
0-6 0-539 0-635 0-545 4 
0.7 0-658 - 0-741 0-661 7 
0-8 0774 -- 0847 0-7759 
0*9 0*888 - 0953 0888 5 
1.0 1.000 1-059 1 000 
1i2 1'222 - 127k 1-220 
1-4 1441 1-482 1*438 
1-6 1-657 1.694 1-654 
1-8 1-873 -1906 1P869 
2-0 2 088 - 2*118 2-084 

Range of validity of results 

Solutions of the transport equation, (2.5), on which are based the calculation of 
conductivity, have been obtained for particular values of the parameters p and r, and 
the limitations which this imposes on the applicability of the results must be 
considered. 

Examination of the derivation shows that the form of the solution of (2.5) does not 
depend critically upon the value of r, equal to 0F/0D, provided that r > 1. The Debye 
temperatures of most metals are such that a small value of r could arise only from 
a value of OS corresponding to electrons distributed in a narrow band, and this case 
is not treated here. Moreover, an unfilled narrow band is ordinarily superposed on 
an unifilled wide band, and the relative contribution to the conductivity from the 
narrow band is then usually very small. The use of the particular value r = 300 thus 
imposes no serious limitation on the range of applicability of the results. 

The solution of (2 5) is more sensitive to the value of p = (2q2) , due to the fact that 
x(2 6) is proportional to p. Although no detailed calculations have been made of the 
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conductivity for values of p other than 2i (corresponding to one conduction electron 
per atom), examination of the derivation and of the general run of the results 
suggests that the temperature variation of conductivity would not be very different 
from that for p = 2k. 

One further general point may also be noted. Reference has been made only to 
conduction by electrons, but the results obtained apply equally well to conduction 
by 'holes' in an otherwise full band, provided that the density of states curve is of 
standard form at the top of the relevant band. 

5. COMPARISON WITH EXPERIMENT AND CONCLUSION 

The experimental results to be considered are taken from data given by Grilneisen 
(I928), Onnes & Tuyn (I929) and Meissner (I935). The results are usually given as the 
ratio, RT/RO, of the resistance of a specimen at the temperature to the resistance of 
the same specimen at 0? C. This approximates sufficiently closely to the ratio of the 
specific resistances, PTIPO. The values considered here have been 'corrected' by 
Matthiessen's rule for the temperature-independent 'residual' resistance, and there- 
fore correspond to the 'ideal' resistance. In general the results are for specimens of 
a high degree of purity and the residual resistance is small compared with the 
observed resistance except at very low temperatures. Consequently, at intermediate 
and high temperatures deviations from Matthiessen's rule, such as have been 
observed by Griineisen (I933) and considered theoretically by Dube (I938), would 
have only a slight effect on the ideal resistance. 

The experimental and theoretical results may be conveniently compared by using 
the reduced form PT!PO* In order to determine this quantity from the given values of 

PT/PO, values of Po/Po have been determined by graphical interpolation, using values 
of SD from Borelius (I935, p. 252) and Seitz (I940, P. 110). The experimental values 
of PT/PO as a function of T/OD and the corresponding theoretical curve (cf. table 2) 
are shown in figure 3. It may be noted that errors in the somewhat uncertain values 
of AD have only a slight effect on the experimental (PT/P0o) (TIOD) relation, since 
a change in the value adopted for SD affects both quantities in approximately the 
same way. 

The most striking feature of figure 3 is the good agreement between the experi- 
mental points and the theoretical curve over practically the whole temperature 
range considered. An alternative method of representation, which brings out more 
clearly the deviations between the theoretical and experimental results, is suggested 
by the theoretical linear relation between PT/Po and T/OD at high temperatures. In 
figure 4 the reduced specific resistance (pT!pe)!(T!0D) is shown as a function of TIOD. 

In figures 3 and 4 the agreement between the theoretical curves and the experi- 
mental points for the noble metals, copper, silver and gold, is very good except at 
high temperatures, where the experimental values lie above the curves. The observed 
PT, T curves are convex to the T-axis in this region, and this deviation from a linear 
relation betweenPT and T has been ascribed by Mott & Jones (I936, p. 268) to a de- 
crease of the effective Debye characteristic temperature with increasing temperature. 
No accurate theoretical estimate of this effect has been made, but Mott & Jones (I936, 
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p. 17) give a simplified treatment of the effect of thermal expansion on the char- 
acteristic vibration frequencies of a lattice. From this they show (1936, p. 269) that 
the variation of the characteristic temperature is of the right order of magnitude to 
account for the observed curvature in the pT' T curves for the noble metals, assuming 
that (PT!T)cc1!O2 (cf. equation (2.12)). 

2-~~~~~~~~ 

1~~~~~~~~~~~~~~1 

TIOD 

FiGuRE 3. Specific electrical resistance as a function of temperature. Theoretical cu-rve and 
experimental points. For sources of the experimental values see text. The broken line 

gives T(TT., and the dot-dash curve T5(PT/T,)O ; cf. table 2 and related text. The 
Po Po 

dotted curve is interpolated. PT, PO, specific resistance at T' K, OD' K; OD, IDebye chlar- 
acteristic temperature. 

A Li 400 0) Cu 315 F- P b 8 8 
V Na 150 E] Ag 215 x Pt 225 
K K 100 Aul170 + Pd275 

The agreement between experimental and theoretical results in figures 3 and 4 is 
not so good for the alkali as for the noble metals. For sodium, in particular,, there are 
significant deviations. It is possible, however, to obtain fairly close agreement with 
the theoretical curves by adopting a value for0D of about 2000 K, as compared with 
the mean value of about 15O0 K determined from specific heat measurements. This 
disagreement is surprising, but it is noteworthy that low-temperature specific heat 
measurements by Pickard & Simon (I1948) indicate that, in addition to an anomaly 
in the specific heat-temperature curve at about 70 K, the effective value of OD 

increases with temperature at least up to 25' K; the value at 20 K is given as 

OD=880 K, and at 250K asD = 156 0K. On the basis of evidence similar to this 
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Mott & Jones (I936, p. 11) have suggested that for the alkali metals 'the divergence 
between the true vibration spectrum and the Debye form is particularly great'. 

For the transition metals, platinum and palladium, the experimental and 
theoretical values agree well except at high temperatures, for which the experimental 
points lie below the theoretical curves. There is strong evidence to indicate that in 
these metals the electrons outside full bands are distributed in two overlapping bands, 
the s and d bands. The current is carried mainly by the electrons in the s band, since 
the effective mass of the 'holes' in the d band is much larger (cf. Mott & Jones I936, 

I .2 

0*8 ! jv 
I vw 

0- 6 -I 7 
SOi6 

.I 

0 2 3 
I, 

T/O0 

FIGURE 4. Reduced specific electrical resistance as a function of temperature. Theoretical 
curve and experimental points. For sources of the experimental values see text. The 
broken, dot-dash and dotted curves correspond to those similarly shown in figure 3. For 
symbols see figure 3. 

p. 267). It has been suggested by Mott (I935, I936a, b) that transitions of electrons 
from the s band to the d band, due to 'collisions', may play an important part in 
determining the conductivity of these metals, and it is shown that in this case the 
estimated PT' T curve is concave to the T-axis, as is observed (cf. Mott & Jones I 93 6, 
p. 269). This treatment has, however, been criticized by Wilson (I938), and it cannot 
be said that a completely satisfactory solution of the problem has yet been attained. 
Detailed discussion of this particular question is outside the scope of -this paper, but 
two points may be noted. First, it may be shown from (4 1) and the preceding 
considerations that the temperature variation of resistance of a metal in which the 
electrons (or 'holes') outside full bands are distributed in two or more bands of 
standard form is the same as in the case of electrons distributed in a single band, 
provided that 0F for each of them is much greater than OD, that the numbers of 
electrons (or 'holes') in the various bands are independent of temperature, and that 

Vol. 2Q2. A. 3r 
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there are no transitions between the bands due to 'collisions'. Secondly, in actual 
metals in which there are overlapping bands there may be a redistribution of 
electrons among the bands with increasing temperature. This 'transfer effect', which 
has been considered in detail in relation to the associated magnetic and thermal 
properties by Wohlfarth (1949), may lead to a relative increase in the conductivity 
with temperature, and consequently the PT, T curve may be concave to the T-axis. 

The principal reason for including the experimental points for lead in figures 3 and 
4 is that this metal is representative of a large number of metals for which the 
temperature variation of electrical resistance agrees well with the theoretical curves 
of figures 3 and 4, although there is no evidence to suggest that their electronic 
structures are such as to satisfy the basic assumptions involved in the theoretical 
treatment; in particular, that the 'conduction' electrons are distributed in a band 
of standard form (cf. (2.4)). To avoid confusion the experimental points for only 
a few metals are included in figures 3 and 4 (although even so there is some overlap 
of the points for different metals). However, since the calculated curves agree fairly 
well with the Griineisen curves over most of the temperature range, the comparisons 
which have been made between experimental values for a large number of metals 
and the Griineisen curves (see, for example, Griineisen I933; Meissner I935) serve 
as a rough comparison between the theoretical curves and experimental values. The 
good agreement which is found in many cases indicates that in general the temperature 
variation of electrical conductivity in metals depends only slightly on the electronic 
structure of the metal, and is determined primarily by the temperature variation of 
the lattice vibrations. 

Concluding remarks 

The primary aim in this paper has been to extend the detailed development of the 
Bloch treatment of the temperature variation of electrical conductivity, so as to 
cover a much wider temperature range than previously, and to test the applicability 
of the treatment to actual metals. It will be clear from the preceding discussion that 
in the main the agreement between calculated and observed values is good over the 
whole temperature range. Although the agreement is in no case perfect the deviations 
may in general be ascribed to factors of secondary importance, and it may be con- 
cluded that the theoretical treatment covers satisfactorily the main features of the 
observed temperature variation of conductivity. 

In this paper attention has been restricted to the consideration of electrical 
conductivity, but the Bloch treatment may be readily generalized to deal with more 
complex transport effects, such as thermal conductivity and thermoelectric power. 
In these cases integral equations arise analogous to that treated here, and both the 
methods and the detailed results considered here may be of value in the treatment 
of these more complex effects. 

I am indebted to Professor E. C. Stoner, F.R.S., for his constant guidance and 
encouragement in this and other work. My thanks are also due to Dr E. P. Wohlfarth 
for many helpful discussions; to Mr B. A. Lilley for criticism of the draft manuscript; 
and to the Department of Scientific and Industrial Research for grants. 
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APPENDIX 

A variational treatment of the Bloch equation 

Kohler (1949) develops a variational treatment by which successive approxima- 
tions to the electrical conductivity may be determined from the transport equation 
without the distribution function being obtained explicitly (see also Kiohler I94I, 
I948). This method is widely different from that adopted in the present paper, but 
since both treatments are based on essentially the same initial equation (cf. Kohler 
I949, p. 681), they should lead to the same calculated temperature variation of 
conductivity. Kohler concludes from his variational treatment that the calculated 
conductivity is, to a close approximation, equal to that given by Griineisen's 
empirical formula over the whole temperature range. This result is significantly 
different from the results of the present paper (cf. table 2). 

The fact that the two treatments lead to different results may arise either from 
inadequacies in one or other of the methods, or from errors in their application. 
Careful examination of Kohler's paper indicates that there is an algebraical error in 
the derivation of the expression given for the conductivity (Kohler I949, pp. 686, 
688). This expression may be written in the form 

C- = G-G (1 +Akl + A2 + A3 + ., (A. 1) 

where oa is the Griineisen value. It is implied that A3 and subsequent terms are 
negligible, and for A1 and A2 Kohler obtains 

A 
2 

a 
2 

(712 2 1 =J7) )1 2 

2 I (A. 2) 

where J% = j:(--z 1) (1_ _z a = 2- y2; y -= /DT; y = kT/U-T/0F. 

For the relevant temperature range y < 1 (cf. table 1, ? 3), so both A1 and A2 are small 
for all values of y, and co is closely equal to oS. The derivation of (A. 2) is not given in 
detail. On working through the derivation along the lines indicated by Kohle4, the 
same expression is obtained for A1, but for A2 a different expression, namely, 

A2 (J) 24 a+ { - + (6a- 272) (J7)-(s?) + l (J9)} , (A. 3) 

is obtained. (Thanks are due to Mr B. A. Lilley for kindly checking the derivation of 
(A. 3).) The numerical value of A2 from (A. 3) (of order 10-2) is generally much greater 
than that from Kohler's expression (of order 10-7), since (A. 3) does not contain y as 
a factor. Values of A1 and A2, calculated from (A. 2) and (A. 3) with values of J7 and 
Jg determined by numerical integration and values of J5 from Griineisen (I933), 
are shown in table 3 for a number of values of y. In evaluating (A. 2) the ratio 0v/0D 
has been taken as 300 (cf. ?3). 

For comparison with the results of the variational treatment the results obtained 
by numerical successive approximations (cf. table 2) may be represented in the form 

cr = O'G (I + L)3 (A.4) 

310h2 
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The corresponding values of L are shown in table 3. It is to be noted that the form of 
(A. 4) gives a false impression of the method of derivation of the values in table 2; 
(A. 4) is only introduced to facilitate comparison between the two sets of results. 

Since A2 is not neghgible for a wide range of values of y (cf. table 3) further terms in 
(A. 1) may also have to be taken into account in evaluating oc accurately by the 
variational method. Moreover, Kohler indicates that all the Ai are positive, and 
since L may be written formally as ZA, it may be concluded from table 3 that the 
results of the treatment in the present paper are at least not incompatible with those 
of the variational treatment. 

TABLE 3. COMPARISON OF REDUCED CONDUCTIVITIES CALCULATED BY A VARIATIONAL 

METHOD (THIRD APPROXIMATION) AND BY NUMERICAL SUCCESSIVE APPROXI- 

MATIONS. (FOR EXPLANATION SEE TEXT) 

A1, A2(A. 2), values from (A. 2) (cf. (A. 1)); 
A2(A.3), values from (A.3); 
L, values calculated from (A. 4) and table 2, ? 4; y = ODIT. 

y 1 2 3 5 
A1 x 106 62 70 068 023 
AS x 106 (A. 2) 0.41 0 40 0 39 0 35 
A2 x 102 (A.3) 0.1 1.2 3*4 8 1 
Lx102 <1 18 5.5 13 
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