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The width of the ground state, i.e. 8266 cm.—, is the largest yet recorded.
Numerous examples of predissociation are found.
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DEscrIPTION OF PLATE 19

PbF band systems: (@) absorption; (b) emission ; (c) system B,, absorption; (d) system
E, absorption; (e) system B, emission.

The electrical conductivity of the
transition metals

By A. H. Witso~x
Trinity College, Cambridge

(Communicated by R. H. Fowler, F.R.S.—Received 20 June 1938)

INTRODUCTION

1-1. The conductivity of a pure metal depends upon a large number of
quantities, and it is difficult to decide the relative importance of the various
constants since they often produce compensating effects. It is, however,
generally agreed that the low conductivity of the divalent metals, and
especially of bismuth, is due to the small effective number of conduction
electrons. It has further been suggested by Mott (1935, 19364, 19365b) that
the low conductivity of the transition elements, which are even worse
conductors than the divalent elements, is due to another cause, namely, to
the abnormal smallness of the free path. The transition metals possess
conduction electrons in an s-band and they also have unfilled d-bands.
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Hence, in addition to the normal s-s transitions the electrons can also undergo
s-d transitions, and this results in a shortening of the free path.

One of the difficulties in the way of a complete theory is the necessity of
separating the normal s-s transitions from the s-d transitions, and so far it
has not proved possible to do this. In the present paper it is shown that the
resistances produced by the two different types of transition have different
temperature variations, and therefore that it should be possible to estimate |
their relative importance by measurements over a sufficiently large range of
temperature. '

1-2. 'In order to obtain an insight into what happens we consider a simple
model, for which quantitative calculations are carried out in §§2 and 3.
Many of the results are, however, qualitatively true for more general models,
but at present it is impossible to carry out the calculations completely
except under the simplest assumptions. We take the energy zero at the
bottom of the s-zone, and we assume that for thiszone theenergy is given by

Rk

=0,
8mimyg

Ey(k) (1)

where k is the wave vector of the state and m, is the effective mass of an

electron in the s-zone. The energy in the d-zone is assumed to be given by

B2 |k|?
87%m,

Eyk) = 4 - (4>0), (2)
where m,; is the effective mass of an electron in the d-zone and is much greater
than m,. The quantity 4 and the number of electrons are such that there are
some electrons in the s-zone and some vacant levels or holes in the d-zone.
Let { be the Fermi energy of the conduction electrons. The value &, of { at
T = 0 gives the energy of the highest occupied level, and for most purposes
the variation of { with 7' is negligible. At 7' = 0 the electrons in the s-zone
are contained in a sphere in k-space of radius %, and the holes in the d-zone
are contained in a sphere of radius £;, where

B2

B2k 2
8m2mg (3)

— e )
8memy,

§0=

o lies between 0 and 4, and in general we should expect that k; > k,, but it is
difficult to give any very accurate estimate of these quantities. The energy
levels are shown schematically in fig. 1.

When an electron undergoes a transition from a state k to a state k’ by
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interacting with a lattice wave whose wave vector is q, energy must be con-
served, and hence
E(k')— E(k) £hv(q) = 0, (4)

where hv(q) is the energy absorbed or emitted by the lattice wave. Since
hv(q) is very small, we can say that the energy of the electron must be
practically unaltered by the collision. Further, on account of the exclusion
principle, the final state must be an unoccupied one. Hence, if an electron is
to undergo an s-d transition, its initial state must be one with |k | nearly
equal to k,, and its final state must have |k’ | nearly equal to k;. There is,
however, one further condition which was omitted by Mott. Owing to the
symmetry of the crystal lattice, the transition can only occur if (Wilson
1936, p. 199)

k-kK +q =0. (5)
E
s
A
E-%
/ d
’ 0 ks kd .k

Fia. 1. The s and d levels in a transition element as functions of k. The thick lines
represent levels occupied by electrons at the absolute zero.

This involves a considerable restriction on the possible transitions, since
k,+# k4, and hence a large value of | q | is required. We therefore deduce that
lattice waves with small wave numbers are ineffective in producing s-d
transitions. This is a general result and does not depend on the simplifications
introduced by our model. A more complicated model would not change the
result essentially, but it might change considerably the limiting wave
number which produces transitions.

At high temperatures all the lattice vibrations are excited and the s-d
transitions must be frequent. At low temperatures, however, only the low-
frequency vibrations, with small values of |q |, occur with appreciable
intensity, and hence the s-d transitions must decrease exponentially with
temperature. Thus, although the resistance may be dominated by the s-d
transitions at high temperatures, the resistance at sufficiently low tempera-
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tures should be entirely due to the normal s-s and d-d transitions. It should,
therefore, be possible to separate the two effects.

The resistance of platinum does not show an abnormal decrease at low
temperatures which can be ascribed to the falling off of the s-d transitions.
The significance of this, and of the behaviour of the thermoelectric power, is
discussed in §§ 2-3 and 3-2.

The quantitative theory is exceedingly complicated, even for the simpli-
fied model which is discussed here. Although approximations have finally to
be made, the calculations have been given in detail so that the various
assumptions can-be clearly seen. This is particularly desirable, since the
expressions obtained for the second-order quantities differ from those given

by Mott.

THE EQUATIONS FOR THE DISTRIBUTION FUNCTION

2-1. Let f denote the velocity distribution function of the electrons, and
let #°(k,Kk’) be the probability that in unit time an electron makes a transi-
tion from the state k to the state k’. Also let [9f/0t] denote the net rate of
increase in f due to the collisions. Then (Wilson 1936, p. 158)

o - ! K)f(K) {1 —
B ] [][oraome) o -y |
WO (L~ WMl (©)

If we put f= f0>+ f1, where f, is the Fermi function, and make various
plausible assumptions, we can show that the net rate of change in f for the
electrons in the s-band, due to transitions to and from the d-band, is

[%ﬂd B Zfrglgl;if Uf‘;g; [{fld(k+q) [N (@)+1—fos(K)]

—f1s(K) [N (@) + foa (K + @)} 2{ B, (k) — E; (K +q) +hv(q)}
+{f1a(K+q) [N(Q) +fos (K)] = f15s(K) [NV (@) + 1 — fou (K +q)]}

xQ{Es<k)—Ed<k+q>—hv<q)}] dgy daydgs, )

This only differs from the expression for one band (Wilson 1936, p. 204),
because the initial and final states belong to different bands and must be
distinguished by suffixes s or d. C;is an interaction energy which measures
the effectiveness of the s-d transitions, 4 and M are the volume and mass of a
unit cell of the crystal, N(q) is the energy distribution function of the lattice,
and 2 is a time factor whose effect is considered below. @, is the weight of the
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d-states (apart from the weight factor 2 due to the spin); the weight of the
s-states is taken as unity.

The reduction of the triple integral to a single integral proceeds in the
usual manner. We take polar co-ordinates ¢, 9, @ in the q space, the polar
axis being in the direction of k. Then

E(k)— Eyk+q)+hv(q)
2 2
R,
8m%m, 8m%*m,

(1 L\A%2 B2 2
= (%+%)W+M(2kQCOSﬁ+q )—A +hv(q). (8)

Now (Wilson 1936, p. 197)
Q(x) =

(|k|2+2k.q+|q|*) +Av(q)

sin 27t [h
2mz/h
Hence, putting

y = 2mi{E (k) — E,(k+q) + hv(q)}/h,
we have

T F=0 1
f QB,k) - By(k +q) £ hv(@}sindap = 2d [T g, (g
0 hkq Jo-r y

For large ¢, the integral on the right of (9) is 77 if the limits of integration are of
opposite sign, and it is zero otherwise. It is not possible to express the limits
simply, but if we neglect the small term Av(q) we obtain much simpler
expressions, which are adequate for our purpose. The condition for the top
limit to be positive is that

8m*m, A my
- JOE )

Since only the electrons near the top of the Fermi distribution contribute to
the conductivity, we may put & = k,. Then, by (3), the above condition
becomes

q > kd - kS'
Similarly the bottom limit is negative provided that
q > ka’ bl kd'

One or other of these conditions is always satisfied, and hence the condition
for an s-d transition to be possible is

g>|ky—k.|. (10)

This condition is obvious from the arrangement of the energy surfaces.
For, the smallest value of q is required when an electron jumps from a point
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on the s-sphere in k space to the nearest point on the d-sphere. In this case k
and k’ have the same direction and hence ¢ = | k;—k, |.

We may remark here that if the energy surfaces are not spheres it is
possible for the s- and d-surfaces to cut. The minimum value of ¢ is then 0.
This applies, however, only to those electrons whose energy levels lie along
the intersections. For the vast majority of the electrons a non-zero value of
¢ is required to produce a transition, and the argument is not essentially
altered by the presence of a negligible number of electrons which can be
scattered from one band to the other by long lattice waves.

We now restrict ourselves to problems in which the current is along the
x-axis, and we put

fi = —kye(n) o (11)

We can replace any slowly varying functions of sin¥ by their values when
y = 0, since practically the whole of the integral (9) comes from small values
of y. The integration over w can then be carried out. If 6 and 0, are the
angles between the z-axis and k and q, we have

¢, = q cos 0, = g(cos 0 cos? + sin 6 sin Y cos @)
27
and fo ¢ dw = 271q l;c cos 190

My qopy MetMg  hPQ°
N 2m,E (4 Fh) 2mg,  16mm E

Finally, putting « = hv/kT and 3 = (E—{)/kT (k here is Boltzmann’s
constant), we obtain

ofs1 _  kiofy mo P (T OIT 22dz
ot sd_ E%E P Sd@ @E,Tez—l

2
x[{cd(77+z)(E’+mdA m, +de, mgkT2 D_le) Fey(n )} e+ 1

M 2m 2mg ©6? el +e?

(12)

my A _mg+m m kT2 T2 e+ 1
{Cd(ﬂ z)(E+ & B) K~ gm D@§22)—E0s(77)}e,,—_2ﬁ]

s ms

 ky ofy T\3[-0sIT [OIT 141 22z
B E‘gaEwd de(@) f—@/T +f@E/T6”+Z+1ll"e_zl

‘ mg mg—m, makTz T2 |
X I:Cd(?? +z) {A 2ms— E 2ms + 2ms D@z 2 Ecs(ﬂ) ’
_ (6m2)ER? 3 ¥ 3m0y

= 16mPmga? %4 2mE Mak®

where
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O is, as usual, the Debye temperature, and k@5 = hvy, where vy is the fre-
quency corresponding to the minimum value of ¢ necessary to excite the
s-d transitions. When K = {, the value of ¢ is | k;— &, |. Itis to be noted that
O is a function of #, and that (13) is to be taken as zero if O > 6.

2:2. The formula we have just derived is so complicated that we must
make some approximations before going any further. Since 4, K and D are
all of the same order of magnitude, the coefficient of ¢, is probably consider-
ably smaller than the coefficient of ¢,, and we therefore neglect c;. As a
reasonable estimate we might take A — £ = J}; Eand E = D. The approxima-
tion is then justified unless m,/m, is very large Very large values of mz/m, of
the order 10 to 20 have sometimes been proposed to account for the proper-
ties of the transition metals (e.g. Baber 1937). I cannot believe that such
large values ever occur. Measurements of the specific heat or magnetic
susceptibility give w;m; and not m;. Now in an atom the d-states have a
fivefold degeneracy. In a cubic crystal this degeneracy is partly removed
(Bethe 1929), and the states split up into two sets, one of which isdoubly and
the other triply degenerate. It is not possible to say whether these states
overlap or not. But, if we put w,; = 3, then values of mg4/m, of the order of 3
to 5 are sufficient to explain all the results. These values are small enough to
justify our approximation.

It should be noted that the probability of scattering is proportional to
w,my, but not to the density n,(#) of states in the d-band as stated by Mott.
Thus the scattering probability is of the same order as that predicted by
Mott but it has a different form, and this has important consequences in
connexion with the second-order effects. The reason why he arrived at the
wrong result is that he did not take account of the conditions (5) and assumed
instead that every k' state is attainable from every k state.

The probability of scattering due to s-s transitions is (Wilson 1936, p. 207)

ofs | _ k9o Ty?
ﬁlg“ E%Emf)@)

orr 2 @+l 2Pdz
1 -
(14)
This has to be added to (13) in order to obtain the complete expression for
[of,/ot]. The corresponding expressions for [0f;/0t] can be readily obtained,

but we do not need them. The conductivity due to one band is (Wilson 1936,
pp. 161 or 208),

o= 7—;6;1'@').
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Hence, even if the time of relaxation is of the same order for both s- and d-
bands, the conductivity due to the d-band can be neglected, since m ;> m
and since our theory is at best only an indifferent approximation. (Note
that the weight w,; does not come into the conductivity of the d-band if we
agsume, as is reasonable, that an electron in one of the d-bands can be
scattered into any of the degenerate d-bands. There is then a factor 1/w, in
the conductivity due to the w, possibilities of scattering, but there is also
another factor w; due to there being w,; bands to carry the current, and
hence w; does not come into the expression for the conductivity except
through the time of relaxation.) If we take into account the contributions of
the d-electrons to the current, the conductivity is increased and the thermo-
electric power is decreased.

2-3. After all the approximations have been made we have

a_fs}~ b, p (T
ot B =\e

orr e+1  2%dz
1 B
f [s(ﬂ+z){E+§sz D z} Eey(n )]ev+z+1|1 =

k, of, T { —0zT  rO/T e+1  2%dz '
t aEwdmdP“’d(@) J—BIT +f@E/TEGS(77)6”+Z+ 1[1-e I} - (15)

To solve this equation for small values of &/ we adopt the usual method of
expanding the integrands in terms of z and retaining only the leading terms.
We obtain

afs T 1 0%

kl s( aE@ Eg{%msﬁsl)'kwdmd%dE(l"‘”@“‘z“)}' (16)
Since the time of relaxation 7,, when it exists, is defined by

Tg

1 T1 ]
we have o {%m s D +Tgmg Py E( @123)} (17)

Ts

2-4. Although it is not possible to define a time of relaxation at low
temperatures it is easy to obtain a solution for ¢(5) when the only external
influence is an electric field. This calculation follows exactly the same lines
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as Bloch’s calculation of the conductivity of monovalent metals (see, for
example, Wilson 1936, p. 212); it gives

et (5) |, =i

+"“"P§(§)f/,<*——1>—flr:‘*ﬂ .

This is the general expression for the specific resistance and can be used for
all temperatures except very high ones. When 7, exists it can be obtained
from the relation o = ne?r,/m.

2-5. The resistance of platinum does not show any abnormal decrease at
‘low temperatures of the kind predicted. The resistance does indeed behave
abnormally, but the variation is in the wrong direction. At very low tem-
peratures the resistance is proportional to 7%, instead of to 7® as for a normal
metal. This variation with 7' has been ascribed by Baber (1937) to the
collisions between the s- and d-electrons.

The resistances of the other transition elements are not known accurately
at low temperatures. If they behave like platinum we must conclude either
that the s-d transitions are not important or that k, = k&, for all the metals.
If this latter condition were found to be satisfied, it could only be so for some
very general reason, connected presumably with the stability of the metallic
ctate.

THE SECOND-ORDER EFFECTS

3-1. The effects, such as the thermoelectric power, which depend on the
derivatives of 7, present considerable difficulties. Mott (19365) has given a
theory of the thermoelectric properties of the transition elements based on
the assumption that the probability of s-d transitions is proportional to the
density of d-states. We have seen in § 2-2 that this is not correct. The in-
correctness of the assumption does not have much effect on o, but it com-
pletely changes the theory of the second-order quantities. However, Mott
and Jones (1936, p. 313) give some numerical values for 4 — { which seem to
confirm Mott’s theory. I believe that this confirmation is not as convincing
as it seems.

Mott cites the large thermoelectric powers of the transition elements as
evidence of the s-d transitions. The thermoelectric power of platinum at
high temperatures is about — 1-8 x 10-27" 4V /degree and that of palladium is
about —3:4 x 1027 uV/degree. These are very much smaller than the
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thermoelectric powers of the alkalis and could be explained without much
difficulty by the elementary theory based upon the assumption that the s-
electrons are perfectly free. The thermoelectric power is —&/e, where
(Wilson 1936, p. 177)

S = k2T (—1« +1ﬂ) (19)

8 E 10E)g-¢

I being the free path. For perfectly free electrons ! is proportional to E?, and
hence

m2 k2T

z

If we take the number of s-electrons per atom to be 0-6 and assume that
mg = m, the mass of a free electron, we find for platinum that the thermo-
electric power is — 2-15x 10~27 4V /degree. To explain the considerably
higher thermoelectric power of palladium we should have to assume that m,
is larger than m, but this is quite a reasonable assumption and the value of

my required is about 1-5m. On these grounds alone we are therefore not
obliged to adopt Mott’s hypothesis.

(20)

Cu Ay
8 0\/\[ ) 0
: :
T 10 APd B -10 Pd
3 5]
E f:
8 =20 2 -20
3 2
= =
-30 -30
0 20 40 60 80 100 0 20 40 60 80 100
Atomic 9, Pd Atomic 9%, Pd

Fi1a. 2. Absolute thermoelectric powers of Pd alloys at 0° C.

Another piece of evidence which has been advanced is the dependence
-upon composition of the thermoelectric power of the palladium alloys. If
copper, silver or gold is added to a transition metal, the holes in the d-band
are filled up and at the same time & becomes larger. When all the holes are
full, further addition of the monovalent metal causes & to decrease. The
interpretation of this phenomenon is not, however, as unambiguous as might
appear at first sight. In fig. 2 are shown the absolute thermoelectric powers
of the two alloys PdCu and PdAu (Borelius 1935, pp. 404-5). The anomalies
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in the PdCu curve at 75 and 50 9%, Cu are due to the formation of super-
lattices. Since the formation of the superlattice CuPd is associated with a
change in the crystal structure from face-centred to body-centred cubic, we
consider only the superlattice Cu,Pd. Even for this superlattice there is a
slight change in structure, the ordered state being very slightly tetragonal.
However, if our present ideas about superlattices are correct, there ought
to be no essential difference in the electronic energy levels of the ordered and
disordered Cu,Pd lattices. On the other hand, the thermoelectric power of
the ordered state is considerably smaller than that of the disordered state.
This suggests that some of the change in the thermoelectric power of the
alloys is due to the random distribution of the atoms. (Since condition (5)
does not apply to electronic transitions caused by the random distribution of
atoms, the s-d transitions might be more frequent in the disordered than in
the ordered metal. It is difficult to say what effect this would have.) It is
impossible to estimate what the thermoelectric power of an alloy would be if
it were ordered at all compositions, and it may be that the effect would not
be large. It is, however, obvious that the behaviour of these alloys indicates
that the simple theory is inadequate, which assumes that the arrangement of
the energy levels is independent of the composition and that all the effects
can be ascribed to the change in the number of valency electrons.

107

Microvolts/degree
RN
S

200 400 600 800 1000 3K

Fie. 3. Absolute thermoelectric power of Pt.

3-2. The thermoelectric power of platinum as a function of the tempera-
ture is shown in fig. 3 (Borelius 1935, p. 400). The thermoelectric power is
negative at high temperatures and positive at low. The obvious interpreta-
tion is that the current is carried by electrons at high temperatures and by
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positive holes at low temperatures, but it is extremely difficult to see how
such a state of affairs could possibly happen. Another possible explanation
is that ol/0E is positive at high temperatures and negative at low tempera-
tures. It is perhaps worth pointing out that such a behaviour is possible
with the model we are considering.

If we take 7 from equation (18) we have

0

0
= t
5% —logl = 1og (TE?)

_2_31 [ p(T)sf‘"”T___z"’iz‘__
“E 0B ™ =\g) |, @-1)(1-e>)

T[OT  Bde
romBab(g) [ i) &)

This expression cannot be used at very low temperatures since 7 does not
then exist. The correct expression can be obtained by a method which I
have given recently (Wilson 1937), but the results are exceedingly compli-
cated and (21) is sufficiently accurate for the present discussion. If the
second term on the right of (21) is zero, that is, if the s-d transitions are
unimportant, we regain (20). In order to obtain the desired behaviour of I,
the second term must be small at high and large at low temperatures. The
only factor which can possibly vary in such a manner is

o [er 23dz

38 | or@—1) (1=c )’ (22)

The quantity 005/0E can be either positive or negative and is of the order*
+0Og/E. For, Oy = constant | k;— k|, and hence

00y 00y [0F

OE ~ 0k, [ Ok,
__, constant my k2
-3 2E (k8+ mskd)

by (3). The plus sign is to be taken if k; <k, and the minus sign if &, > k..
(This is obvious from fig. 1.) The expression (22) is therefore of the order

+ 1 (Og/T)*
E (e@E/T 1) (1 — e-"@E/T)

(23)

* Tt is probably larger than this by a factor of the order mg/m,, but this does not
affect the argument.
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the numerical value of which is small for both large and small values of
O/T but which is large for intermediate values of @/T. In order that
ol[oE may be negative for some range of temperature it is necessary that-
(22) should be positive, that is, that k;> k..

Whether 9/0E ever becomes negative is an extremely difficult question to
answer, since the expression (23) occurs multiplied by a complicated factor,
including powers of 7'. It seems probable, however, that this could be
arranged by a proper choice of the constants. If the explanation put for-
ward here is correct, then at low temperatures where (23) is small the
thermoelectric power ought to become negative once more. This would be a
decisive test of the theory, but unfortunately the measurements do not
extend to sufficiently low temperatures. Changes in the sign of the thermo-
electric power occur for some substances at liquid helium temperatures, but
the thermoelectric power of platinum has not been measured in this region.
Finally, although the present theory does give rise to the possibility of
0l/0E changing sign, yet the explanation advanced seems too artificial to be
the correct one.

3:3. The resistance of platinum at very high temperatures increases less
rapidly than 7. This is a second-order effect which depends on the second
derivative of 7 and therefore involves even greater refinements than does
the theory of the thermoelectric power. We must now use a more accurate
formula for o than we have hitherto done. We have (Wilson 1936, p. 162)

- o
o= 3ﬂh2fff7 | grad, & | 5 dle, dkydk,

__1e2mmie® [ . Ofy
= - — g J E dE
This can be evaluated by the approximate formula

qu(E Vo am — g0+ Ic2T2(§g2)E§

Now ris given by (17). If we neglect the s-d transitions, we obtain (compare
Wilson 1937, equation (14))

o= constant 14+ (ﬂkT)z:I
= T 7 .

In order that this formula should fit the experimental results, the value of {
must be small and therefore the effective mass of the s-electrons must be
large, of the order 4m. This is too large to be reasonable.
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If we use the expression (17) for 7,, which includes the effect of the s-d
transitions, we obtain an even worse result if @ is treated as constant. In
fact, if we assume in addition that the s-d transitions are much more im-
portant than the s-s transitions, we find

- = constant 1 +} (ﬂ)z:l
T 3\ ¢ ’

In order to obtain a larger effect with the present model it is necessary to

invoke the variation of O5 with E. It seems impossible, however, to obtain

any numerical estimate of how much difference this would make, and the

theory is very speculative.

SUMMARY

By using a model in which the energy surfaces are spheres, a complete
theory is worked out of the s-d transitions in a metal containing incomplete
d-bands. The results are of the same order of magnitude as those given by
Mott’s qualitative theory, but differ considerably in detail and in interpre-
tation. Itis shown that the s-d transitions should fall off exponentially as the
temperature is lowered. A suggestion is put forward to explain the change in
sign of the thermoelectric power of platinum at low temperatures.
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