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On the relation between grey and white tin (a-Sn and p-Sn) 

BY M. J. P. MUSGRAVE 

Basic Physics Division, National Physical Laboratory, T6ddington, Middlesex 

(Communicated by J. A. Pople, F.R.S.-Received 30 August 1962) 

A model capable of representing the structure of either grey or white tin and susceptible to 
lattice dynamical analysis has been studied. Values of atomic force constants for the models 
have been estimated and used in the appropriate secular equations to calculate frequency 
distributions of lattice modes for the two phases. From these distributions, thermodynamic 
quantities (in particular the specific heat and the vibrational contribution to the free 
energy) have been computed and the results are compared with observed data; fair agree- 
ment is found in view of the assumptions involved and the lack of any observed elastic 
constants for grey tin. 

The values of the force constants in relation to the phase change are discussed and a 
suggestion about the interpretation of the angular stiffnesses in terms of the interaction of 
the Fermi surface with Brillouin polyhedra is offered. 

1. INTRODUCTION 

Tin is commonly found in one of two allotropic forms, x-Sn having the diamond 
structure, or fl-Sn having a body-centred tetragonal structure. It is possible to 
regard the x-phase also as a body-centred tetragonal structure have a particular 
value of the axial ratio which gives rise to the higher cubic symmetry. As has been 
pointed out by Hall (I956), Prasad & Wooster (I956), and more recently by Miasek 
& Suffczynski (i96i), the fl-phase may then be interpreted as a structure in which 
the regular tetrahedral assemblage of first neighbours is distorted by a shear, which 
enlarges by equal amounts the two angles in the planes of symmetry containing 
the z axis (0 -* 0') and correspondingly decreases the remaining four (0 -i 0), while 

the first-neighbour distances are equally extended by a small amount (see figures 1 
and 2). 

It seems at least possible that the actual transition from the x- to the fl-phase 
could take this mechanical path. Wolfson, Fine & Ewald (i960) report that 'the 
gray tin buckles visibly immediately in front of the advancing interface' (of trans- 
formation from a-Sn to f-Sn). Accordingly, a lattice dynamical model of the 
structure with arbitrary axial ratio has been set up with the purpose of relating 
the central and angular stiffnesses assumed for the model to the elastic constants 
of the crystal. The determination of such force constants for the fl-Sn structure 
allows a calculation of the frequency distribution and hence various thermodynamic 
quantities. In the absence of a set of observed elastic constants for a-Sn, an estimate 
of appropriate force constants has been made and a frequency distribution and 
thermodynamic quantities computed for comparison with the fl-phase and experi- 
mental observations. 

An interpretation of the negative values of some of the angular stiffnesses is 
offered and their possible relevance to the mode of instability indicated. 

[ 503] 
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2. SPECIFICATION OF THE f8-Sn STRUCTURE 

Diamond structure has already been numbered by Musgrave & Pople (i962) in 
dealing with a general valence force field and it is convenient here to use the same 
enumeration while referring to x' and y' tetragonal axes having directions (1, 1, 0) 
and (1, 1, 0) when referred to the cubic axes x and y of the diamond structure. 
Figures 1 and 2 and table 1 together specify the reference atoms and neighbours 
which will be considered in this work. 

14- 

12 

4~~~~ 

FIGURE 1. The diamond structure of grey tin (ct-Sn) as interlinked body-centred tetragonal 
lattices with p _ c/2a' _1/1>2. Numbering of atoms in accordance with table 1. 

10 ~ 1 1 
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FIGURE 2. The structure of white tin (f-Sn) as interlinked body-centred tetragonal 
lattices with p = c/2a' = 0272. Numbering of atoms in accordance with table 1. 
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The atomic dimensions and elastic constants of fl-Sn have been determined at 
various temperatures from 4-2 to 300 OK by Rayne & Chandrasekhar (i960) and 
their values of the atomic spacings are given in table 2 together with values of the 
spacings in oa-Sn due to Wyckoff (1948). 

TABLE 1. SPECIFICATION OF ATOMS IN os-Sn AND fl-Sn STRUCTURES 

The co-ordinates of each atom are given with reference to (i) the usual cube axes of diamond 
structure, and (ii) the tetragonal axes of/Il-Sn structure. When the axial ratio p = c/2a' = 1/V2. 
the f-Sn structure is identical with the diamond structure. 

co-ordinates referred 
to cube axes of co-ordinates referred 

diamond structure tetragonal axes of 8-Sn 
(units) (units) class of neighbour 

no. of ,1 A 
atom a a a a' a' c in a-Sn in/I-Sn 

1 0 0 0 0 0 0 
2 1 1 0 1 0 0 2(12) 6(4) 

3 1 0 1 1 --i- i 2 4(8) 
4 0 1 1 2 2 2 4 
5 1 1 0 1 0 0 2 6 
6 1 0 1 -2 1 -2 2 4 
7 0 1 1 -1 -a -1 2 4 
8 1 1 0 0 1 0 2 6 
9 1 0 1 -2 2 2 2 4 

10 0 1 1 -I 1 2 4 
2 2 

11 1 1 0 0 1 0 2 6 
1 2 1 0 1 --2 2 4 
13 0 1 1 2 1 1 2 4 
14 0 0 2 0 0 1 4 (6) 2 (2) 
15 1 1 2 1 0 1 
16 0 0 2 0 0 1 4 2 

T -0 2 2 0 1 (4) 1 (4) 
2 -W -2 2 -01 1 

2 22 0 1 1 1 
4 1 1 0 - 1X 

5 2 2 2 2 ? - 

6 2 2 2 2 -4 X - 

7 1 3 5 1 - X 
2 2 2 1 i 

9 1 1 1 3 

2 -E 1 -1 
-2 I I X 3 _8 

2 2 2 1 1 1 
3 

-2 2 ?1 - i 3 
103 1 1 1 1 10 2 i -w 2 2 X 3 - 

I T I A~ I 13 2 2 2 2 ? 3 - 

12 - I 0 4 3 3 (4) 
13 2 2 2 01 33 

1 3 a givenc1as 3 3 2 2 20 
147 .1 

_1 3 
10 33 3 2 2 2 

T 

16 ~ ~ ~~~~~0 - 5 (4) 

Note. The number of neighbours of a given class in each structure is given in brackets by the 
first-listed member of each class. 

To assess the significance of the interactions between the various sets of neigh- 
bours is one of the main purposes of this essay; however, since there are only six 
independent elastic constants from which to derive atomic force constants, progress 
is not possible without some extensive simplifications. First, let us glimpse at what 
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the retention of generality would demand and derive the number of independent 
force constants for the various sets of neighbours by using the symmetry elements 
of the structure in the context of Born's lattice dynamics. 

TABLE 2. ATOMIC DIMENSIONS OF c-Sn AND /-Sn (300 K) 
a-Sn f-Sn 

class of class of distance 
neighbour distance A neighbour (p = c/2a') A 

1 2a V3 = 2 80 1 -la'(/ p2)t- 3.0224 
2 aJ2 = 4-59 2 c = 3.1828 
3 -T-aV1l = 5 38 3 la'(1+9p2)j = 3.7682 
4 2a = 6 49 4 (1/V2) a'(1 + 2p2)j = 4.4122 

density = 5.75 g/Cm3 5 la'(1+25p2)1 = 4-9324 
6 a' = 5-8315 

density = 7-31 g/Cm3 

3. GENERAL FORCE CONSTANTS FOR THE /8-Sn STRUCTURE 

The following operations specify the group: 
-I 0 0- 

(1) reflexion in the plane x' = 0, T ?=0 1 0 ; 
[ 0 1 

-1 0 0- 

(2) reflexion in the plane y' = 0, T2 = 0 1 0; 
0 O 1 

-0 I 0- 

(3) reflexion in planes x' = y' followed by T3 = 1 0 0 ; 
reflexion in z = 0, [ 0 1 

-0 1 0- 

T4= [ 0 ? 
0 0 1 

-I 0 0- 

(4) inversion about (la', 0 -lc), i.e. reflexion in T.5 = 0 0 . 

the origin followed by a translation, 0 0 1 

Denoting by - JD,,(ln 1'), the force on 1 in direction oa caused by unit displacement 
of 1' in direction P/, and applying the above operations, we find 4D,, typical of the 
first six sets of neighbours as follows: 

'D~(l, 3) =-- Jjo / representative of first neighbours, 
(1 Y' ojr 

(Dafel( 14)-- ' aO representative of second neighbours, 
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-A 0 O0 
< (1, I3) =- /t v representative of third neighbours, 

4( 1, 3) -- ' p' o- representative of fourth neighbours, 
T C' p 

_ K ? X 

(P4,8(1, 16) -0 K o representative of fifth neighbours, 
-X 0 K ' 

FDas(l 2) - I' representative of sixth neighbours. 

The dynamical matrices for the other neighbours may all be found from those 
above by application of the symmetry elements; those used in the sequel are listed 
in appendix 1. The total number of force constants necessary to represent general 
interaction up to sixth neighbours is 32. Consequently, an intuitive choice of 
atomic stiffnesses likely to be significant is the only viable approach. 

4. CHOICE OF A FORCE FIELD FOR THE fl-Sil STRUCTURE 

The elastic constants of carbon, silicon and germanium may, to a first approxima- 
tion, be successfully interpreted in terms of a simple valence force field consisting 
of an extensional stiffness between nearest neighbours, kr and an angular stiffness, 
ko. Consequently it seems appropriate to attempt to extend these concepts to the 
fl-Sn structure. The more complicated model should of course simplify to the 
elementary form of valence force field when p = 1/12 as in x-Sn. 

In the fl-Sn structure, the six angles formed at the centre of the tetrahedral 
assemblage 1 1f2 34 consist of a four and a pair of different magnitudes, q5 and O', 
as shown in figure 2. We assume two different angular stiffnesses ki and kit associ- 
ated with the deformations of these two types of angle; further, the second and 
third neighbours are much nearer so that central stiffnesses k1, k2, k3 would seem 
essential. We may now choose one more force constant determinable from six 
elastic constants. The introduction of central stiffnesses k4or k6gives rise to a partial 
redundance since they are already to some extent implied by k1c and k1c, so k5 is the 
most obvious candidate among central stiffnesses. On the other hand, if the transi- 
tion occurs in the mode here envisaged, deformation of the angles in the structure 
may very probably be more important than the change of fifth neighbour spacing 
and a further constant relating to angular deformation may prove to be of greater 
relevance. It would also have the advantage that any further interpretation could 
include concepts which are not localized but pertain to the crystal structure as a 
whole, namely the band structure in relation to the Brillouin polyhedra. Pursuing 
this intuition, some form of interaction constant for deformations of the angles 0 
and/or q' seems appropriate. Since the change in magnitude of q5' in the transition 
from the ac- to the s-form is much greater than that of q5, it is perhaps reasonable 
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to suppose that an interaction constant, ki0c', for deformations of opposite angles 5', 
may prove an interesting choice for the sixth force constant. 

A model in which the stiffnesses kl, k2, k3, koP k, k,, are preferentially significant 
is therefore proposed. 

The potential energy of deformation is then 

@D= k (ri5)2 (&r1)2+ 13 (ri)2 
1st neighbours 2nd neighbours 3rd neighbours 

+ 1kor2 E (80)X 2 + I (&q$') (&2'). (4.1) 
allq all opp. anglesqY 

5. CALCULATION OF THE CONTRIBUTIONS TO THE (Daf 

The contributions to the @af from the various constants of the assumed force 
field are determined as follows: 

[(r, (1,n) = kN [a)]r[8~n )], (5.1) 

where n may specify any atom 2 to 16, 1 to 15 and N denotes the class of neighbour 
to which n belongs; if we write r2 = la'2(1 +p2), then 

0J (1, n) - ic 
r{[a(l)m][ xm(n) + ax,, a(1) jx,}(n) (5I2) 

when n = 1, 2, 3,4 and the sum over all appropriate m is taken in each case; 

D(O) (1, n) = (3 r) ax (n 
aO (5-3) 

when n = 3, 4, 6, 7, 9, 10, 12, 13 and the appropriate m is chosen in each case; 
similar expressions to (5.2) and (5.3) determine <(D1b)(1, n); finally 

( ') (1, n)=ko~,r2 e Inm 
knj + j n-v(5.4) (I)S S ) 1 ) =esis r (axa( l)] oaxf(n)]+[ axx( l)]o> o 

when n = 1,2, 3,4 and 

00'0(, n)ko,o~r{ 
2 aorP] [5rnm] 0 (5.5) satf )l 7 )=k0 r([axa( l)] o 

ax,(n) 
oJ 

when n = 3, 4, 6, 7, 9, 10, 12, 13, and in each case the remaining suffixes are chosen 
to yield opposite angles S'. 

The values of the partial derivatives in the above expressions are given by the 
following relations 

ainm _ - [{x [- xy()ax (5]6) 

[ax ( 1)J 0 = - 
[{x-,(1) - xa(n)} cot 00 - {x,(mn) - x,(n)} cosec 00], (5.7) 

akinm I 

[ax,~n)lo = -r [{xi(1) -x(n)} - {xt(n) - xf(m)}] [cosec 00-cot 50], (5.8) 
P 2 1 + P2 where cot 00O<(1 2p2), cosecS00 =1(1 2p2) 
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so that cosecq50-cot 0 = (1?2p2), 

cosec b0 + cot 0 --(1+ 2p2)' (5'9) 

and a8 1$b] _ = r2 [{XZ( 1 )-a) o 5-x~)XPoe o (5. 10) 

I__Vmn fI - n -[{Xx(U) -x(fir)} cot S4-{xft( -xft(m)} cosecq?] (5.11) 
axft(n) 0 ( )0 ( 

where cot O'=-(1-p2)/2p, cosec 00(1p2)/2p, (5.12) 

so that cosec +5 ? cot 0 = p+1 
Using relations (5.1) to (5.12), we find that the contributions to the for atoms 

representative of each class of neighbour have the following forms: 

0+p2 ?2]1+ j 2(1 +p2) 0 

LP 0 p2_1 +p2[_- p 0 2 
-- 0 ~0 0P (5.13) 

4),6(1,14) =-k2[0 0 I (5.14) 

p<(1,14)=-1I+p2[0 0 ] (5.15) 

ck -p2(1 +p2) p p3 
@Pzft(1,3) = (j +p2) (+2 L (1+p2)2 p2(1+p2) p(l +p2)I 1 p2) 2=p(1 +p2) p3 p2J 

+lkP H 1] 

~~~ ~ ~~ ].2 0 0 (5.17) 

When p = 1/l2 and k2 = 0 k/3 =17 k, k1 = k1, these reduce to the matrices for 
a simple valence force field in diamond structure referred to tetragonal axes. 

6. THE EQUATIONS OF MOTION AND THE FREQUENCY EQUATION 

The equations of motion for the two reference atoms 1 and 1 may now be written 
down and the plane wave displacements 

u, 
(1) exp i(w{q xa(n) - t}, -x(1) exp Po-qaxa(n) - t} 

33 Vol. 272. A, 
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for each Bravais lattice of the structure may be substituted therein; the vectors 
uv (displacement), q<: (slowness), x' (position) have components parallel to x', y', z 
axes as - 1, 2, 3. The six simultaneous equations 

L -A J K P 0 C 1u1(l)- 
J* G-A L 0 Q D u2(1) 

K* L* H-A C D R U3(1) - 

* O C*0 F-A J* K* Ul(1) ( 
O Q* D* J G-A L* U2(f) 

C* D* R* K L H-A -L3(y ) 

are then obtained, where A M=w2, m being the mass of the constituent atom. The 
spectrum of angular frequencies woi (qa) (i = 1, 2, ..., 6), is obtained from the latent 
roots of the 6 x 6 matrix and the corresponding vectors may thence be found. 

The elements of the matrix in expanded form are 

F = 2[/k + 4pk+ + 8 -+ 2k3 
1+ P2 1?+9p2 

- [1-cos 2qla' COSlq2a' Cos c]+ p 02k[1-COS q a'], (6.2) 1 +2p2 2l21 p2 

G 2[k + 4P2] 8ki + 2k3 
1?p2 1 + 9p2 

- 8p2k[ cos -q2a' cos 2q3c] + 2p2koE - COS q2a'], (6.3) 1? 2,2 [1 co2- [ 

4[p2k, + 4k - ko)]36p2k3 H = 
-p- 2 

+ + 2k2[1 - cos q3C] + 
I 

+ 9p2 

+1+p2 {21%2+ko k ) [1-cos qja'cos2q2a'cos q3C] 

- 2kp2 [2-cos q a'-cos q2a'], (6.4) 

J tko ( P4 e-iqi3c+(+p2)e iq3c} 

+ --e- kot5 eiq3C] sin 1qa'sin Iq2a', (6 5) 

i 
[-i 

~~~~~+-p2 kssn2 ' p(pk e 23c ,,,, 1+p 

+ 0+ sin l a cos q2a'] (6.6) 
1 + 2p2- 

iE 2p k sinq2a'-4 (1 -p2)e(1+ 2p2)- I + 

+ - Cos - q, a' sin Xq2a'], (6 7) 1 ?2p21 J 



The relation between grey and white tin 511 

D [ 2+p2{ - 2(1ck + ic -k,0 } 1 
e 1iq3c_ 

- sin 1 q2a', (69) 

P =-2 COS cosqla' e + 42 cos q2a' 2Ii23C 

2. I +1a eI+j, (610) 

D= -2[i lp 5q 2i e-4iqaC+ 4c6cos 2qla' 4iq3c 

9 2cos q2a e4 3] ( 

+(P 21k_+ 
(k o, -+ooje- p 1i -jfq ] (6.11) 

[( = +p! Cos O lq'l 3 
C ek 12C+os 'q 2 

t-igc 1? = -2 [j1 ~ ?2 2 qae 2cco qa 4 

{cos~q~a' -j3q C -!a'ji3q3Ci 

++ 9p2{COS q~e--4- 3 C+ COS 5~a/e4- ]. (6212) 

7. THE RELATION BETWEEN THE ELASTIC CONSTANTS 

AND THE FORCE CONSTANTS 

In the limit as q O? and w -> 0, w9/q = V, the phase velocity of elastic waves in 

the medium; hence we obtain relations between the elastic constants and the atomic 
force constants. 

The expansions in powers of the components qO, of the elements of the matrix 

are, to second order, 

p = 2 +22(ql q2,qq2q3,q3q1'qlq2) 

G = Go + G2 
H-Ho +112 

J= ~~~~~J2 
K = K qqq)+K 

L= L1 +L2 (7.1) 

Q = Q?Q1 Q 

0 = C1 +0 2 

D = D1+ D 

Following the argumnents of Born (see, for instance, Bornl & Huang I1956) the relative 

displacement of the reference atoms may be determined to the first order from the 

equation 

o Q0 ?~l 1+1 0 Q1 D1+L1 1=0 (7-2) 
o o ] c T1-K1 1E1-L1 0 

33-2 
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and then the frequency equation to second order in q may be obtained as 

Ua( l ) P, ? Cl-i - P,/PO 0 C, + K11P0 

M,?O 2 -412 ? Q1 D1 0 Q1/Q0 D1 + LljQO 

- C, + l DI +F LI 0 _C - K1RO D1-L1/RO 0 

[2 + P2 J2 C2+ K2-1)Fu(1) 

+ J2 Q2+Q2 D2+L2 (7-3) 
-C2+ K2 D2? L2 H-2?BR2JJ 

Noting now that the density PD - 4m/a/2c and in the limit of small w and q, wl/q 
becomes the phase velocity of elastic waves, we may derive expressions for the 
elastic constants in terms of the following combinations of the force constants: 

4 [AB p2 p2{A -3B - 4N}2 1 
c=[ V ~ ?~{+P M{+?N+2T}-E- 8{p2(A+9B)?4N}]' (7-4) 

C12 = 
C{22 ( 

C13 = 4 2 E (A + 9B) + + (76) 

C3= [P2 +(A+81B)+4P2k2+ 4Pp2E 2p3M4, (757) 

C1 =- I- 4p2E + _P_{1c(A + BB+ 4p2T) + B(A + 4pT)}17 

C66 -(4/C) [-E + 9B]j, (769) 

where A = 1 +1 2X B = c 4 3 

4 4 4p2E ~'92, 

E- P k= T_ 7c2 p7 
1+2p2' 1?p2' 

- ~~~ N Ic~~~~-k~~~, (7*10) 
l+p2 2?p2 

i Ap2' B+p2 

Each of these reduces to the appropriate expressions for elastic constants of 
cubic symmnetry when p _ 1/1/2 and only k1, k, = k,> are non-zero. 

It is worth rem arking that the constant associa~ted with bulk or purely dilatational 
strain (c, c, e) is 

2C11? 2c12+ 4c13+C33 = (4/c) [1(1 + p2) 11+ 4p212-+-2 6(1 + 9p2) 1E3] (7-11) 
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and independent of the angular stiffness, while the constants associated with the 
shears (e, - e, 0) and (le, -e, - c) are respectively 

c1- C12 =c 4 +P 2N 
4 p2(A+9B)+4N] (7.12) 

and 

C11 + C12 4c13+ 2C33 =c[( 1-2p2)2 + 8p2k2 + ? (I1 8p2)2 + 9p2M + 2E ] 

(7.13) 

8. NUMERICAL VALUES OF THE FORCE CONSTANTS AND 

THE FREQUENCY DISTRIBUTION FOR fl-Sn 

The relations (7 4) to (7.9) may be used to derive values of the force constants 
from observed values of the elastic constants. Thus kd may be obtained from (7.9); 
summation of (7*4), (7*5), (7.6) yields 

C11 + C12 + C13=[k1 + k3]/c (841) 

which in conjunction with (7.8) gives k, and k3; k2 can then be found from (7-11) 
after which kIc and k~, as defined in (7.10), are obtainable from (7 6) and (7.12). 

Table 3 shows the elastic constants of fl-Sn as they have been reported by various 
authors. The corresponding force constants have been calculated but each set has 
proved to render the model of the structure unstable to certain lattice modes 
(, 5 %) when the secular equation has been solved for a population of 72 wave 
vectors whose extremities are uniformly distributed over the repeating sixteenth 
portion of the Brillouin zone. The instability of these modes is a result of the 
negative values of the angular stiffnesses, ko, and kow which are sensitive to changes 
in c13 as the two sets of constants for 300 'K, derived from Rayne & Chandrasekhar's 
measured phase velocities, indicate. The behaviour of ko, and k1co, is discussed in a 
later section, but their sensitivity suggests that only a small change in the elastic 
constants would yield a set of force constants which would render the model of 
the structure stable. Examination of the secular equation which yields the most 
negative root (see appendix 2) has suggested that if the magnitude of the negative 
angular stiffness kep is sufficiently small, the model is stable to all lattice modes. 
Accordingly, the sets of stabilized force constants have been produced which offer 
agreement with the observations of Rayne & Chandrasekhar except for the value 
of c13; this constant has a value which though lower than their measurement, is 
not at all unreasonable in view of the considerable scatter of the values variously 
reported (see table 3). 

With the use of set (iii) of stabilized force constants, a frequency distribution 
(figure 3) has been derived from the solutions to the secular equation over a popula- 
tion of 72 wave vectors. This distribution has been used as a basis for the calculation 
of such thermodynamic quantities as the specific heat Ci, the characteristic tem- 
perature, (, and the vibrational contribution to the free energy as functions of 
temperature. These results for fl-8n, together with similar calculations for a-Sn, 
are discussed in relation to experimental data in ? 10. 
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FIGURE 3. Calculated frequency distribution of lattice modes in ,-Sn. no is the effective total 
population of calculated frequencies, N^(w) Aw is the number of frequencies per mole 
lying in the range Aw, N is Avogadro's number. 

9. FORCE CONSTANTS, ELASTIC CONSTANTS AND THE 

FREQUENCY DISTRIBUTION FOR oc-Sn 

Grey tin occurs commonly in a powdery form and it is generally presumed that 
this fragmentation is related to the large decrease in density when the transition 
from white tin takes place. Single crystals of ac-Sn have been prepared from an 
amalgam in recent years (see Ewald & Tufte I958), but their size does not appear 
to have offered encouragement for a measurement of the three elastic constants. 

The only values extant seem to be those suggested by Potter (1957) in the light 
of various thermal data. In view of this, it is perhaps justifiable to seek other guides 
as to their values in relation to the present work. 

Examination of the observed elastic constants of other diamond structure 
elements shows that, to a first approximation, they are interpretable in terms of a 
simple valence force field represented by an extensional stiffness, kr, and an angular 
stiffness, ko, where kr 18ko. If we are prepared to accept this highly simplified 
model, then an estimate of a single elastic or force constant will serve to define the 
remainder. 

It is possible to put some bounds on the values of kr by plotting the values of the 
central force constants, k1, k2 and k3 against corresponding atomic spacings and 
then extrapolating the exponential-like curve which may be drawn through them 
(figure 4). Assuming that the same force law is operative for all three constants of 
/3-Sn and for first neighbours of x-Sn, the value of kr for oa-Sn would appear to lie 
in the range (8-5 to 12.5) x 104dyn/cm. 
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FIGURE 4. The extensional stiffnesses ki(r) (i 1, 2, 3) 
as a function of the atomic spacing r. 

A better estimate of the constant c44 is possible by use of an expression for the 
Debye temperature at 0 0K, ?0, due to de Launay (I954). This gives 

-9N IVI4 \9~ 
? n 47r (k) PD1 18 + V 3f(13 t)> 9 

where N is Avogadro's number, 
V is the molar volume, 
h is Planck's constant, 
k is Boltzmann's constant, 
PD is density, 
f is a tabulated function dependent on the elastic anisotropy of the crystal, 

s - 

- 
C44 t - C12-C44 

C12 + C44 C44 

With the physical data for germanium available, co- "n may be estimated from the 
expression Sn 

(a-S pL- n aac--Sn E ?cLSn 2/ fGe \9T 

CGe - pe_ Ge E?e fLSn) (9.2) C44 PD JVa J i0 P - 

derived from (9-1). The value of Oo--s-u has been taken as 230'K. This estimate 
was made by noting that, in the cases of silicon and germanium studied by Flubacher 
et al. (1959), the value of 00 is very close to the maximum value observed at higher 
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temperatures; assuming a similar behaviour for grey tin, the analogous value for 
?a-sn, G, was read off the curve derived from the observed specific heat, GQ(T) 
in figure 7. The value of fGe is given by de Launay (I956) as 0 7095 and it is not 

TABLE 4. FORCE CONSTANTS AND ELASTIC CONSTANTS FOR 

DIAMOND STRUCTURE ELEMENTS 

Units: cij in 101" dyn/cm2, kj in 104 dyn/cm. 

cl, + 2c12 

element cl, + 2c12 C11-c12 C44 C11-C12 kr k,9 reference 

C 173 56 43 3 09 61-6 3417 Bhagavantam & 
Bhimasenachar 

132-6 95-1 57.5 1-40 47.2 5-62 MeSkimin & Bond 
Si 29-77 10-24 8.01 2-91 16415 0.926 McSkimin 
Ge 22-90 8.20 6.87 2.79 12-94 0 777 McSkimin 
a-Sn 19.2 4-8 3.5 4*0 12-41 0-518 Potter 

17*07 5.69 3 94 3*0 11-08 0-616 present suggestions I 
15*75 5*25 3*64 3 0 10-23 0-568 present suggestions II 

600 - 

400- 

200 _ 

0 1 2 3 41 

1?-13 (S-l) 

FIGURE 5. Calculated frequency distribution of lattice modes in LX-Sn. no is the effective total 
population of calculated frequencies, Na(() Au is the number of frequencies per mole 

lying in the range An. N is Avogadro's number. 

unreasonable to suppose that p-Sn will take a similar value; however, for con- 
sistency with the proposed simple model with k, = 18k', s = 3-8, t = - and the 
corresponding value off-Sn is then 0-803. Table 4 gives the various cij and kj with 
the values proposed for -Sn as a has the value 0 7095 (I) or 0-803 (II). It will be 
remarked that the proposed values of k,, are well inside the bounds suggested by 
the extrapolated curves of figure 4. 
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With the use of this latter set (II) of kr and ko, the secular equation for diamond 
structure has been solved over a population of 89 wave vectors whose extremities 
are uniformly distributed over the repeating I portion of the Brillouin zone. The 
resulting frequency distribution is shown in figure 5 and has been used to compute 
thermodynamic quantities for comparison with observed values in ? 10. 

10. COMPARISON OF CALCULATED AND OBSERVED SPECIFIC 

HEATS FOR o- AND f8-Sn 

The frequency distributions for the two phases shown in figures 3 and 5 were 
obtained by plotting the density of modes for each branch using intervals of the 
form {w - 2h, 0}, {o - h, w + h}, {w, o + 2h] and taking the mean of the three ordinates 
so found for the frequency o; in calculating the ordinates, the contribution to the 
density by the frequencies for each wave vector was weighted in accordance with 
the symmetry of the repeating portion of the Brillouin zone; the total frequency 
distribution was obtained by adding the results for the branches. 

TABLE 5. CALCULATED SPECIFIC HEATS CV(T) AS A FUNCTION 

OF TEMPERATURE FOR THE TWO PHASES OF TIN 

CQ (calnmole-' degK-1) 

T (0K) a-Sn 8-Sn 
5 0*0244 
10 0-0383 0*1456 
15 0-1399 0-4013 
25 0-556 1.181 
50 1.912 3.229 
75 31316 4.322 

100 3 9904 4-929 
150 4-910 5-457 
200 5-3245 5.667 
250 5.542 5.768 
300 5.657 5-825 
400 5.729 5-884 

The lattice contributions to the specific heat at constant volume per mole as a 
function of temperature, C,(T), were computed by numerical integration of the 
contributions from the modes indicated by the frequency distribution. The Einstein 
specific heat as a function of hw/kT according to the tables of Landolt & B6rnstein 
(1927) was found for each frequency interval, was weighted by the appropriate 
ordinate of the frequency distribution and the sum of such contributions divided 
by the total number of modes. 

The calculated values are given in table 5 and plots of the calculated and observed 
(Lange I924) specific heats for the two phases are shown in figure 6. 

It is clear that the calculated values significantly underestimate the specific heat 
even when allowance is made for the difference C. -C, and electronic contributions. 
The former correction as estimated by Hill & Parkinson (1952) for x-Sn amounts 
to 2 o at 100 'K and will be of similar magnitude for f-Sn. The coefficient of the 
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linear term in the expansion of CQ(T) attributable to electronic contribution has 
magnitude 104 cal mole-' degK-2. Kittel (1956) quotes 4 x 10-4 cal mole-' 
degK-2 for fl-Sn so that a correction of 01 cal mole-1 deg K-1 at 300 'K would 
be appropriate. Thus there remains a significant discrepancy between experimental 
and calculated values, particularly at lower temperatures, which is almost cer- 
tainly due to the models of the structures being too stiff as a result of which the 
frequency distributions show maxima in the densities of modes at higher frequencies 
than those which are in fact most heavily populated by the phonons. Alternatively 
expressed, the Debye temperatures estimated from the calculated specific heats 
will be too high. 

6 

6 - z S a 

0 100 200 300 400 
T (OK) 

FIGU:RE 6. The calculated values of specific heat QeT) for oc-Sn (x )and 
3-Sn (0O) compared with observed values of Cj,(T7). 

1.COMPARISON OF CALCULATED AND OBSERVED DEBYE TEMPERATURES 

Values of (i(T) may be estimated from the calculated and observed specific heats 
of the two phases and a comparison is shown in figure 7. 

The discrepancies again emphasize the excessive stiffness of the models. 
Both the force fields used have effectively been derived from the mechanical 

properties of ,(l-Sn in the absence of other relevant data. The frequencies calculated 
for optical modes may be seriously inaccurate and will be those most affected by 
high values of short-range stiffnesses. Such overestimates will surely occur if 
the representation of the structure employs too short a range of interaction. It 
seems probable therefore, that the discrepancies in the calculated and observed 
thermal data are due to the model involving stiffnesses to short-range deformations 
which are too high. 
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FIGURE 7. Characteristic temperatures @(T) derived from calculated (--) 
and observed ( ) specific heats of c-Sn and fl-Sn. 

12. COMPARISON OF THE FREE ENERGIES OF THE PHASES AND 

ESTIMATION OF THE TRANSITION TEMPERATURE 

The frequency distributions may also be used to calculate the vibrational con- 
tributions to the free energies Fvib.(T), F'ib(T) Of the two phases as a function of 
temperature. Landolt & Bornstein (I927) give values of 

Q4Cr(T) dTj_ fdT, (12.1) 

as a function of hw/kT. A comparison of the vibrational contributions FVib (T) of 
the two phases is given in table 6. 

TABLE 6. THE VIBRATIONAL CONTRIBUTIONS TO FREE ENERGY Fvib (T) (CAL/MOLE) 
AS A FUNCTION OF TEMPERATURE FOR THE TWO PHASES OF TIN 

T(-K) -vib. vib - [Fib. -Fvib] 

50 15-455 34*885 19-43 
100 116'42 209*68 93-26 
150 315'63 509 30 193-67 
200 597.38 899*18 301-80 
250 945.95 1365*30 419*35 
300 1350-15 1886-79 536364 
400 2293*04 3077 48 784.44 

The relative stability of the phases is determined by the respective total free 
energies and an estimate of the transition temperature is obtained when the 
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difference in vibrational contributions is equal in magnitude but opposite in sign 
to the difference in internal energy at zero temperature, i.e. 

E,#- Ea =-FV~ib.(T) - Fvib.(f)]. (12.2) 

The right-hand side of (12-2) is plotted as a function of temperature in figure 8. 
Seitz (I940) quotes the difference in internal energy at 0 'K as 399 cal/mole and hence 
from figure 8, we obtain 242 'K as a calculated estimate of the transition tempera- 
ture; this may be compared with the observed result of 286 'K (Busch & Kern i960). 

The relatively good agreement, in view of the assumptions involved in the formula- 
tion of the models, is due to the difference of specific heats for the two phases, as 
calculated and observed, being in better agreement than the absolute values for 
the individual phases. 

800- 

x~~~~~~~~~~ 

o 600 _ 

.n400- 

S Xx~~~~ 

100; 200 _Tt 
0 100 200 300 400 

T (OK) 

FIGURE 8. The difference in the vibrational contribution to the free energy of the two phases 
as a function of temperature calculated from the models. At the estimated transition 
temperature, 242 0K, this difference is equal in magnitude and opposite in sign to the 
difference in the internal energies at zero temperature. 

13. THE STABILITY OF THE TRANSITIONAL STRUCTURES 

The hypothesis latent in this work is that since the two forms of tin may both be 
regarded as body-centred tetragonal structures of different axial ratios, the transi- 
tion between them might take place by means of a homogeneous shear of the type 

The expression for the shear constant which controls this deformation was 
given in (7-13) and related to the force constants and the axial ratio parameter p. 
It is interesting to enquire into the value of this constant as the value of p changes 
in the range 0-272 < p < 0 707. This can be done by assuming a linear interpolation 
of first-neighbour distance over the range and then calculating the other spacings 
from the expressions of table 2. The curve in figure 4 then offers an estimate of the 
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point-to-point stiffness for any spacing. It is possible to put a value on ko(p) by 
interpolation between the values for c-Sn and fl-Sn where it is reasonable to assume 
that the value for the symmetrical valence structure of c-Sn will be a maximum. 
Figures 9 (a) and (b) give the atomic spacings, r(p) and the value of k,(p). We may 
now calculate all the terms in the expression for the shear constant 

C11 + C12 -4c13 + 2c33 

A 

6 

10- 

4/ / 0 5 S 

3 _- ____ 0 

2 l l l 
020 040 o 0 60 0707 020 040 , 060 0 707 

FiGURE 9. (a) Atomic spacings of first, second and third neighbours and 
(b) the force constant 1k, as functions of p. 

TABLE 7. CONTRIBUTIONS OF THE ATOMIC STIFFNESSES TO THE SHEAR 

CONSTANT C11 + C12 -4C13 + 2C33 

Units: kj in 104dyn/cm 

p Alk, A2k2 A3k3 AO Y2Ajkj klcrit( -EAjkj/AO') 
0-272 0658 1-163 0017 0017 1*855 -2-849 

03 0708 0.958 0049 0027 1*742 -- 2-345 
0-4 0563 0-728 0253 0O105 1*649 1-329 
0-5 0350 0 400 0-471 0-270 1*491 -O*626 
06 0-122 0 443 0-529 1-094 -0-459 

0-707 0 - 2*556 2*556 

C11 + C12-4C13 + 2C33 = (4/c) [A1k1 + A2k2+A3k3+ AO ko + AO, ykd], 

where A (I 
- 

2)2 A2 8p2, A3 =( - 
9P2)2 1 

4(1 +p2) ' 2 3 
41+q2 

l8p4 A - 2__ 

?(Ii +tp2) (i + 2p2)v 
A +, 1 + p2 0 

k-,c"'- is the value of this force constant that makes C11 + C12 - 4C13 + 2C33 = O. 
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except that containing k,, + k1c and these are itemized in table 7. There seems no 
way of estimating the values of k1(p); if the explanation of the calculated negative 
values, as offered in the next section, is qualitatively correct, there will occur a 
discontinuity as p is decreased from 0 707 and the value of k1c will change from posi- 
tive to negative. We may enquire, however, what value of k, is necessary to reduce 
the shear constant c1l + C12 -4c 33, to zero and these critical values of k1c- are 
shown in the table. It is noteworthy that for p = 0-5, 06, the values are not very 
large and indeed could render the structure unstable in this mode of shear before 
the onset of instability in the lattice modes of wave number (27T/a', 0, 0); the con- 
dition for stability in such lattice modes is given by (A 2.2) and requires 

k > -0-6207 and > -0-9410 

as p = 0 5 and 0-6 respectively (cf. table 7). A further point of interest is that the 
interaction of second neighbours appears to be the principal stabilizing contribution 
to this shear stiffness. 

14. INTERPRETATION OF THE CALCULATED VALUES OF THE FORCE CONSTANTS 

In attempts to calculate the elastic constants of a crystal from the fundamental 
ionic and electronic structure, the cohesive energy and its variation under strain 
are usually considered in three main parts. These are (1) the various electrostatic 
or Coulomb interactions, (2) the exchange interaction between ion cores, (3) the 
interaction of the Fermi surface with the Brillouin polyhedra of the structure. Of 
these, (1) and (2) may effectively be regarded as giving rise to central force fields, 
while (3) may not be so simply classified. Thus the force constants k11, k2, k3 of this 
note may reasonably be associated predominantly with (1) and (2) while although 
positive point-to-point stiffnesses such as k, k2, k3 may imply a measure of angular 
stiffness, the large positive values of koc shown by the diamond structures (see 
table 4) and the large negative values of k, and kot> (table 3) must be accounted 
for under (3). 

Jones (I949) was the first to relate the geometry of a Fermi surface to the values 
of elastic shear constants. In considering the shear constants of fl-brass, he suggested 
that significant contributions to these constants could be occasioned by the filling 
of the momentum states close to the planes of energy discontinuity. A shear strain 
in configuration space produces a corresponding shear in reciprocal space and this 
can result in an appreciable increase or decrease in the energy of the electrons as 
they occupy the states available under the strained condition. Broadly speaking, 
a positive contribution to the shear constant occurs when the Fermi surface is just 
contained by a plane of energy discontinuity and a negative contribution when the 
surface overlaps such a plane; the magnitudes of these contributions will be related 
to the energy gap. Jones found stabilizing contributions to the shear constants of 
fl-brass while Leigh (I95I) found destabilizing contributions to the shear constants 
of aluminium. 

In consequence, it is tempting to attribute the positive values of ko found in the 
diamond structures with the containment of the occupied states by the fourth 
Brillouin zone, a rhombic dodecahedron across whose bounding faces there exists 
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an energy gap of decreasing magnitude with C, Si, Ge, x-Sn. Similarly, the negative 
values of ko, and koo, which tend to destabilize the f3-Sn (or an intermediate) 
structure, may be qualitatively related to the overlap of the Fermi surface on some 
of the planes of Bragg reflexion for the structure. For example, an overlap of 
occupied states on Bragg planes which are parallel to the tetragonal axis, while 
unoccupied states exist within the same zone in the neighbourhood of the axis would 
offer a destabilizing contribution to any stiffness associated with a change of axial 
ratio, p; in the present case, k-o + kow is just such a stiffness and it is suggested that 

sky, 

44 

FIGURE 10. The (0, 0, 1) section of the Brillouin zones in momentum space. The circles show 
the trace of a Fermi sphere for p - 1/1V2 (dashed line) and for p = 0-272 (full line). The 
shaded areas in the first zone represent the filling of the fourth zone by the latter sphere 
on a reduced zone scheme as used by Gold & Priestley. The axes are marked in units 
of r/a'. 

the negative values found are the result of the negative contribution from the Fermi 
electrons preponderating over any positive contributions. Overlap of the (2, 2, 0) 
planes has been suggested by Lee & Raynor (I 954) in a consideration of the variation 
of axial ratio with electron concentration in tin alloys. More recently, Gold & 
Priestley (i960) have published a realization of the Fermi surface for white tin 
interpreted from de Haas-van Alphen measurements. This shows the Fermi 
surface to be very complicated and extending into the sixth Brillouin zone so that 
the prospects of making quantitative assessments of the contributions to the atomic 
or macroscopic stiffnesses appear remote. However, one distinctive feature of this 
complex surface is an overlap on (2, 2, 0) planes of the fourth zone in extended 
k-space. The (0, 0, 1) section of momentum space with the trace of the Fermi 
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sphere considered by Gold & Priestley is shown in figure 10. For a shear in the 
xVy'-plane in which the square section is distorted to a rectangle, k1, and k?, must 
contribute with opposite sign as appears in the expression forc11 - c12, (7.12). This 
abatement of the negative contribution of these two force constants is perhaps 
related to the adjustment of states under strain taking place only over the Bragg 
planes parallel to the tetragonal axis. 

During the transition from diamond (p = 0 707) to white tin (p = 0*272) struc- 
ture, the radius of the Fermi sphere given by (3/1gp)l 2ff/a' effectively increases from 
1-106(2nr/a') to 1L518(2ff/a'). For diamond structure, the four electrons/atom are 
contained by the dodecahedral zone whose bounding section in the (0, 0, 1) plane is 
defined by the ( ? 2, 0, 0), (0, ? 2, 0) planes. The overlap indicated by the dashed 
circle does not occur until some electrons acquire sufficient energy to cross the gap 
when a destabilizing contribution to the shear mode controlling the axial ratio p 
is caused. It is suggested that this effect predominates for intermediate values of p 
until the stabilizing effect of the stiffness k2 becomes sufficiently large. 

15. DiscussIoN 

In this essay, an attempt has been made to relate the structures of grey and white 
tin in a simple mechanical way and on the basis of a lattice dynamical model to 
calculate thermodynamic quantities for the two phases and compare the results 
with experimental data. Considerable assumptions and some extensive extrapola- 
tion have been involved but the final comparison with experimental thermal data is 
not unfavourable to the main hypotheses of the discussion. However, the basic 
ideas are little more than intuitive and their validity may well be questioned. 

In particular, the choice of the force field for the model is open to criticism on 
the one hand from experts in band structure for whom a model for a metallic struc- 
ture based on the interaction of close neighbours may be anathema and on the other 
from molecular spectroscopists who may be disturbed by the negative value of a 
principal angular stiffness. That the model is inadequate is all too clearly the case; 
how should it be otherwise when determined by six physical constants ? However, 
to the former group of critics, it is perhaps pertinent to suggest that although the 
equations of motion include only selected interactions up to sixth neighbours, the 
interpretation of angular stiffness is in terms of concepts dependent on the periodi- 
city of the structure. To the latter group, the extent to which the force constants 
require modification in order to achieve stability may be a measure of the model's 
inadequacy; however, in an attempt to represent two structures in conditions near 
instability, it is an embarrassing but not altogether unhealthy feature to find a 
parameter, which is closely associated with the mode of instability, extremely 
sensitive. 

Finally, it is appropriate to point out that the section on the structures of inter- 
mediate values of the axial ratio takes even more for granted than the remainder; 
for, in effect, use is made of small deflexion theory when undeniably the deflexions 
from either equilibrium state are large and constraints would be necessary to achieve 
a pseudo-equilibrium for such states. 

The mechanics of the transition between the phases of tin is believed to be 

34 Vol. 272. A. 
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highly relevant to the transitions observed when other diamond structure elements 
and zinc-blende compounds are subjected to hydrostatic pressure (Minomura & 
Drickamer i962; Samura & Drickamer i962; Jayaranam et al. i96i; Gebbie et al. 
i960)). Here again a proper treatment requires a theory of large deflexions but it is 
hoped that the present essay will contribute to the understanding of these phase 
changes. 

I wish to thank Dr A. J. Leadbetter for drawing my attention to de Launay's 
expression (9.1) as a means of estimating, C44 for x-Sn. I would further acknowledge 
with appreciation many encouraging discussions with Mr H. L. Cox; also the 
unfailing assistance of Miss P. Noyes, Basic Physics Division, who prepared the 
figures and tables, did much tedious hand computation and, with the help of 
Miss B. Webber and other staff of Mathematics Division, dealt with the progress 
of the computations performed on ACE. 

This work has formed part of the research programme of the National Physical 
Laboratory and is published with the permission of the Director. 
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APPENDIX 1. THE DYNAMICAL MATRICES FOR THE SETS 

OF INTERACTING NEIGHBOURS 
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APPENDIX 2. THE SECULAR EQUATION YIELDING THE LOWEST ROOT 

As mentioned in ? 8, initial computations using force constants derived directly 
from observed elastic constants of f-Sn yielded a small proportion of negative roots 
for Mw2 thereby indicating that the model was unstable. 

In order to ensure the stability of the model in future computations, the values 
of the force constants obtained from elastic constants with modified values of c13 
were used to find the lowest value of Mw02 to check that it was positive. 

The secular equation with (qa', q2a', q3c) (27T, 0,0 ) gave the lowest root and 
it may be seen from (6.2) to (6-12) that the only non-zero elements of the deter- 
minant are 

F _ 2[k/ + 4p2k]+ 2k3 1622_ k 
F 

+ 2+8k +I+92122 

H 4[p2k, + 4kA'] 36p2k3 ( 16 P2ko + k H= 
1?+P2 +1+ 92 I+1 p2 1+ ~2> +ly0 

4[p2k, + 4ko,] 36p2k3 16p2k (A 2 1) 
l p2 1+9p2 (1+p2)(I +2p2)' 

P 2[kj+4p2k0 - 81 ? 2 _C3 
I +p2 1+ 9p2 

The smallest roots are mw2 _ H (twice), so that for stability 

H>O. (A2.2) 

It is interesting and possibly significant that the associated displacement vectors 
are parallel to the tetragonal axis. Thus the lattice modes closest to instability 
have transverse character related to the shear which changes the axial ratio p. 
In fact, the angles OS' subtended at each atom are deformed by equal amounts, with 
the same or opposite sense, as the atom is a member of one or other Bravais lattice. 
Clearly, these are modes for which negative ko, will offer a significant destabilizing 
effect. 
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