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In this paper, we examine the relationship between noise in an electric circuit and three funda-
mental constants of nature. Using the Nyquist formula, we find a relation between the Johnson
noise and the resistance in the circuit. This leads to an estimate of Boltzmann’s constant kB . The
measurement of Johnson noise as a function of temperature gives another estimate of kB , and also
a measurement of the Celsius temperature of absolute zero. Finally, the measurement of shot noise
from a photodiode gives us a value for the charge of an electron e. Our results all gave the correct
order of magnitude for these constants, however, we were often several standard deviations off of
the accepted values. This lead us to conclude that there was some amount of systematic error in
our system that was unaccounted for in our measurements, and we discuss possible sources for this
error.

1. INTRODUCTION

Thermodynamics serves as a link connecting micro-
scopic properties of physical objects and the macroscopic
behavior of an ensemble of these objects. When the pre-
dictions of thermodynamics are applied to the physics of
conductors and circuits, we find a series of relationships
between the voltages observed in the circuit and several
fundamental constants. These relationships arise due to
two types of noise caused by thermal fluctuations in the
circuitry. The first type, Johnson noise, is present in any
circuit containing a finite resistance. The second type,
Shot noise, arises from discrete passages of charge carri-
ers, such as during the emissions of a photoelectron. In
the following experiments, we will describe techniques for
measuring these two types of noise, and discuss how they
relate to three fundamental constants: Boltzmann’s con-
stant kB , the Celsius temperature of absolute zero, and
the charge of the electron e.

2. JOHNSON NOISE

2.1. Theory

J. B. Johnson performed the first measurement of the
noise that arises from thermal fluctuations within a resis-
tor [1], and using the values obtained in these measure-
ments, Harry Nyquist provided a theoretical description
of Johnson noise. The formula obtained in Nyquist’s pa-
per [2] for the mean squared voltage arising due to ther-
mally induced currents in the frequency range fj and
fj + df is

dV 2
j = 4RkBTdf (1)

Nyquist arrived at this result as follows. The second
law of thermodynamics states that there can be no net
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transfer of heat between two systems in thermal equilib-
rium. Using this result, we can conclude that the power
transferred between two connected resistors due to ther-
mally induced currents must net to zero at any frequency,
regardless of the microscopic properties of the resistor.
This leads to the results that the voltage due to thermal
excitations can depend only on the system’s resistance,
temperature, and frequency of the current.

Next, we note that the energy of each mode of vibra-
tion has energy contained in the electromagnetic field
in, for example, the transmission line connecting the two
resistors. The Hamiltonian for the system will then con-
tain a term depending on the magnitude of the electric
and magnetic fields: (E2 + B2)/8π. We note that since
hf � kBT for our experiment, we need not consider a
quantum mechanical description of the thermodynamics
of the system. The equipartition theorem of thermody-
namics states that each term of the Hamiltonian that
depends only on the square of a canonical position or
momentum variable (i.e. E and B), contributes kBT/2
to the total internal energy of the system, allowing each
mode to contribute kBT to the internal energy. By cal-
culating the power transferred to the transmission line
using this expression for energy, we arrive at the result
given in Equation 1.

More generally, for a circuit with a resistor of resistance
R and a shunting capacitance C, circuit theory allows us
to conclude that the Nyquist formula becomes

dV 2 = 4RfkBTdf (2)

with

Rf =
R

1 + (2πfCR)2
(3)

2.2. Experimental Apparatus

A schematic of the experimental setup for Johnson
noise measurement is shown in Figure 1. A resistor is
attached to two alligator clips that protrude from the
Johnson noise box, and a metal beaker is used to shield
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the resistor from external electromotive forces during the
measurement. A switch connecting the circuit to an ohm-
meter allows for a measurement of the resistance. Dur-
ing the Johnson noise measurement, this connection is
switched off and the ohmmeter is disconnected to reduce
external noise. Another switch shorts the circuit to the
resistor, which allows us to distinguish between the mea-
surement of the Johnson noise of our resistor and the
intrinsic Johnson noise of the setup. The signal from
the resistor is fed into an SR560 low noise preamp which
serves as an amplifier of gain 500 and a high-pass fil-
ter with cutoff frequency of 1 kHz. The signal then en-
ters a Krohn-Hite Model 3988 programmable filter, which
serves as a low pass filter with cutoff at 50 kHz. The sig-
nal then enters the oscilloscope where we can measure
the Vrms.
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FIG. 2: Block diagram of the electronic apparatus for measuring Johnson noise.

FIG. 3: Block diagram of the electronic apparatus for calibrating the Johnson Noise experiment

FIG. 1: Diagram of the apparatus for measuring Johnson
noise. Image from [3].

In order to test the predictions of Nyquist’s theory of
Johnson noise, we need to know the gain as a function of
frequency of our band-pass filter, as well as the shunt-
ing capacitance seen by the resistor. The gain curve
is measured using a function generator to send signals
of different frequencies through the measurement chain.
The ratio of the input and output Vrms gives the gain
at that frequency. Figure 2 shows the gain squared as a
function of frequency. The measurement of the shunting
capacitance is straightforward, and we found a value of
C = 22.7± 1 pF.

When taking measurements, the Vrms measured will
be related to the Vrms produced by Johnson noise in the
resistor and the gain g(f) by

dV 2
meas = [g(f)]2dV 2 (4)

The orthogonality of each Fourier component of the sig-
nal allows us to integrate Equation 2 over the range of
our band-pass to obtain an expression for the total mean
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FIG. 2: Gain squared of the Johnson noise measurement
chain, with steep dropoffs at 1 kHz and 50 kHz.

squared voltage,

V 2 = 4RkBTG (5)

where

G =
∫ ∞

0

[g(f)]2

1 + (2πfCR)2
df (6)

2.3. Measurements

Our investigation of Johnson noise consists of measur-
ing the mean squared voltage for a variety of resistances,
which will yield an estimate of Boltzmann’s constant kB .
We also measure the dependence of the mean squared
voltage as a function of temperature, which not only pro-
vides another estimate of kB , but also gives the Celsius
temperature of absolute zero.

2.3.1. Vary resistance

We took measurements of the Johnson noise for 9 dif-
ferent resistors at room temperature T = 293 K. To iso-
late the noise produced by the resistor, we alternated
between measurements of with the resistor connected to
the circuit, and the resistor shorted. The mean squared
voltage due to the resistor is then given by V 2

r −V 2
s . Five

measurements were taken for each resistor to obtain an
estimation of the random error of the measurement.

In order to calculate G for a given resistance, we per-
formed a numerical integration of Equation 6 from 0.1
to 80 kHz. We used the trapezoidal method to calculate
the integral, which, as shown by Bevington and Robinson
[4], has a numerical error associated with each interval of
df
12h
′′(ξ), where h is the integrand, and ξ lies in the inter-

val f and f + df . Using finite difference approximations
of the second derivative, we found the numerical error to
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be 7 orders of magnitude less than the random errors of
the measurement, so for our purposes we were able to
treat the numerical integral as exact.

Our measurements allow us to solve Equation 5 for
kB for each resistor, and we obtained several values
for Boltzmann’s constant, each with an associated er-
ror. Taking a weighted mean that minimizes the resid-
uals over all the resistances, we found a value of kB =
1.21 ± 0.09 × 10−23 m2 kg s−2 T−1. This is within 2σ of
the accepted value of 1.38× 10−23.

2.3.2. Vary temperature

We also measured the dependence on temperature of
the Johnson noise of a single resistor with resistance
817 kΩ. A low temperature measurement at T= −196◦
C was made by submerging the resistor in a bath of liquid
nitrogen. Other measurements were made by putting the
resistor in a cylindrical oven, and monitoring the temper-
ature using a mercury glass thermometer. Ten measure-
ments were made at each temperature, again switching
between the shorted circuit and the resistor. Calculat-
ing G as before, we made a plot of temperature versus
V 2/4RG (Figure 3). A linear fit to this data gives an-
other estimate of kB , as well as an estimate of the Cel-
sius temperature of absolute zero, T0. We found values
of kB = 2.90± 0.12× 10−23 and T0 = −245◦ ± 12◦ C.

−300 −200 −100 0 100 200
0

0.5

1

1.5

2x 10
−20

T   [° C]

V
2 /4

G
R

   
[J

]

 y = a + kT 

 χ2
ν = 0.33

 k = 2.90±0.12×10−23

 T
0
=−245±11° C

FIG. 3: Measurement of Johnson noise as a function of tem-
perature. The linear fit shown in red has a slope of kB and
an x-intercept of T0.

Our measurement of absolute zero was 3σ higher than
the accepted value of -273, and the measurement of kB is
several standard deviations off. This indicates that there
is likely some systematic error that we are not account-
ing for. One explanation for this error is external noise
affecting our measurements, since this experiment is very
sensitive to the presence of an external electromagnetic
field.

3. SHOT NOISE

3.1. Theory

The noise due to the passage of a discrete charge car-
rier through the circuit is called shot noise. One example
of where it might arise is the emission of photoelectrons
in a circuit. The response of the circuit to a single photo-
electron is to create an initial spike in the current which
quickly settles back to the average current. Several of
these events combined create noise in the circuitry which
is related to the charge e the particle. Appendix C of
[3] provides a derivation of the formula of the current
created by shot noise, which is

d〈I2〉 = 2eIavedf (7)

Thus we see that the shot noise depends linearly on the
charge e of the particle. Thus, a measurement of the shot
noise of a system will allow us to calculate the charge of
an electron.

3.2. Experimental Apparatus

The apparatus for measuring shot noise is shown in
Figure 4. Within the photodiode box, a light bulb of ad-
justable intensity shines on the photodiode, which creates
a current of photoelectrons. The noise measured in this
current will be dominated by shot noise. The average DC
current is measured using a multimeter, and the signal
from the shot noise is amplified within the photodiode
box. It then passes through the same preamplifier and
band-pass chain as in the Johnson noise measurement,
with a gain set at 2000. The AC mean squared voltage
is then measured at the oscilloscope.
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FIG. 6: Diagram of the photo-diode and preamplifier circuit.
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FIG. 7: Block diagram of the experimental arrangement for
measuring shot noise.

ground, through the resistor, into the illuminated diode.
Set the multimeter to measure DC voltage and plug it
into the “first stage output” to measure the voltage RF I.
Leave the rest of the measurement chain just as it was
when you calibrated it.

There are two banana plug ports to measure the cur-
rent to the light bulb. It is a good idea to check the
current before you start. The current should change as
you adjust the potentiometer knob, but make sure that
the current does not exceede 300 mA to avoid damag-
ing the light bulb. If the switch is on and there isn’t a
change in current as you twist the knob, the light bulb
or the batteries are probably dead. Once you finish with
this check, it is a good idea to short the two ports to
reduce extraneous noise.

Record the RMS voltage from stage 2 and the DC volt-
age from stage 1 for various settings of the light bulb
knob. Many repeated measurements at each light inten-
sity will beat down the random errors.

10. ANALYSIS

Plot V 2
0 as a function of the combined quantity

2R2
F Iav

∫ ∞

0

g2(f)df (22)

From the slope of this line determine the charge on the
electron.

10.1. Possible Theoretical Topics

• The Nyquist theorem.

• Shot noise theory

Some useful references for this lab include [4–8].

11. EQUIPMENT LIST

Manufacturer Description URL

Agilent Oscillocope and Multimeters agilent.com

SRS SR560 Preamplifier thinksrs.com

Kron-Hite 8-Pole Band-Pass Filter kron-hite.com

Kay Precision Attenuator
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FIG. 4: Block diagram for the shot noise apparatus.

As with the Johnson noise measurement, we calibrated
the measurement chain by finding the gain as a func-
tion of frequency of our measurement chain. Once again
a function generator was used to input a test signal a
known frequency into the photodiode box in order to
compute the gain g(f). The AC mean squared voltage
will then be given by

V 2
0 = 2eIaveR2

f

∫ ∞

0

[g(f)]2 df + V 2
A (8)

where Rf = 475 kΩ, and V 2
A represents other contribu-

tions to noise in the system.
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3.3. Measurement

By adjusting the current fed to the light bulb, we can
change the intensity of incident light on the photodiode,
and thus change the average DC current in the system.
For 12 different values of Iave we measured the root mean
squared voltage of the AC current coming from the pho-
todiode box. 10 measurements at each value of Iave were
taken in order to asses the random errors of the system.

Figure 5 shows a plot of the measured mean squared
voltages. The x-axis gives the quantity 2R2

fGIave, so that
the slope of a line fitted to the data will be e, the charge
of an electron. Here, G is the integral of the gain squared
over the range of the band-pass filter.
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FIG. 5: Plot of shot noise from a photodiode. The linear fit
shown in red has a slope of e.

The data yielded a value of e = 1.138± 0.032× 10−19

Coulombs, and the fit had a reduced chi squared of
χ2
ν = 0.3. This value for e differs from the accepted value

of 1.602×10−19 by 30%. As with the Johnson noise mea-
surement, it is likely external noise is interfering with the
measurement chain to introduce a systematic error that
is skewing our data.

4. CONCLUSIONS

In this experiment, we measured the two types of noise
that are inherent in any circuit. We examined the depen-
dence of Johnson noise on resistance, and using our mea-
surements were able to measure Boltzmann’s constant
to be kB = 1.21 ± 0.09 × 10−23 m2 kg s−2 T−1, which
is within two standard deviations of the accepted value.
Our measurement of Johnson noise as function of tem-
perature yielded gave kB = 2.90 ± 0.12 × 10−23 and the
Celsius temperature of absolute zero T0 = −245◦ ± 12◦
C, compared to the accepted value of −273◦ C. Finally,
our measurement of shot noise gave a measurement of
the charge of an electron to be e = 1.138± 0.032× 10−19

Coulombs, which is 30% off the accepted value of 1.602×
10−19.

The fact that all our measurements were of the correct
order of magnitude, but several standard deviations off
the accepted values indicates that there was a systematic
error present that we were not accounting for. This er-
ror likely arises from external electromagnetic fields, since
our apparatus is surrounded by computers and other elec-
tronics. Also, the measurements made in this experiment
are very sensitive to the configuration of the setup, and
change the position of cables can have an effect on the
measured noise. These effects combined may have caused
our data to have been slightly skewed.
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