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An experiment was performed that determines the Boltz-
mann constant k and the centigrade temperature of abso-
lute zero by measuring the thermal noise of resistors. The
Nyquist theorem provides a quantitative relationship be-
tween the thermal electromotive force across a conductor
and its resistance and temperature. Measurement of the
root-mean-square RMS voltage for a variety of resistors at
a fixed temperature was used to calculate the Boltzmann
constant. The RMS voltage for a 22.5 kΩ resistor was mea-
sured over 300 degree temperature range. This latter data
extrapolated to zero centigrade gave an estimate of abso-
lute zero and provided an additional method for determining
the Boltzmann constant. The experimentally determined val-
ues of the Boltzmann constants, 1.37 ± 0.06 × 10−23 J/K &
1.363 ± 0.025 × 10−23 J/K, and the centigrade temperature
of absolute zero, −265.5± 6.9◦C, are in good agreement with
the accepted values.

I. INTRODUCTION

This paper is a full report on the junior lab experi-
ment: Johnson Noise. In this experiment, we study
the phenomenon of thermal (Johnson) noise as predicted
by the Nyquist Theory.

This report has been partitioned into sections accord-
ingly, each discussing a specific aspect of the experiment.
Section II discusses the theoretical background relevant
to the experiment by deriving the Nyquist Theorem using
two different approaches. The experimental apparatus
and details of its operation are discussed in section III.
Section IV presents the experimental results. Concluding
remarks are given in section V.

II. NYQUIST THEORY

Johnson Noise is the mean-square electromotive force
in conductors due to thermal agitation of the electro-
magnetic modes which are coupled to the thermal envi-
ronment by the charge carriers. The Nyquist Theory is
of great importance to experimental physics and in elec-
tronics. It gives a quantitative expression for the John-
son Noise generated by a system in thermal equilibrium
and is therefore needed in any estimate of the limiting
signal-to-noise ratio of an experimental apparatus. In
this section, the Nyquist theorem is derived in two ways:
first, following the original transmission line derivation,
and, second using microscopic arguments [1], [2].

A. Transmission Line Derivation

Consider two conductors each of resistance R at a tem-
perature T connected as depicted in Figure 1. Conductor
1 produces a current I in the circuit equal to the electro-
motive force due to thermal agitation divided by the total
resistance 2R. This current delivers power to conductor
2 equal to current squared times the resistance. By sym-
metry, one can deduce that the situation is reciprocal.
Conductor 2 produces a similar current which delivers
power to conductor 1. Because the two conductors are at
the same temperature, the second law of thermodynam-
ics dictates that the power flowing in both directions is
equal. I emphasize that no assumption about the nature
of conductors has been made.
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FIG. 1. Two conductors with equal resistance R.

It can be shown that this equilibrium condition holds
at any given frequency. Suppose there exists a frequency
interval ∆ν1 where conductor 1 receives more power than
it transmits. We then connect a non-dissipative network
with a resonance in the frequency interval ∆ν1 between
the two conductors (refer to Figure 2). Since the sys-
tem was in equilibrium prior to inserting the network, it
follows that after is insertion more power would be trans-
ferred from conductor 2 to conductor 1. However, as the
conductors are at the same temperature, this would vio-
late the second law of thermodynamics. The results we
have arrived at are important enough to merit summariz-
ing. By eminently reasonable theoretical arguments, we
can conclude that the electromotive force due to thermal
agitation in conductors are universal functions of (refer
to Figure 3):

• frequency ν

• resistance R

• temperature T

Experiments performed by Dr. J. B. Johnson in 1928
confirmed the formula which was later derived Dr. H.
Nyquist on purely theoretical grounds [3].

The derivation of the mean-square voltage 〈V 2〉 across
a conductor closely follows Nyquist’s original derivation.
The problem of determining a quantitative expression for
the thermal agitation (i.e. the mean-square voltage) of
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FIG. 2. Two conductors plus resonant circuit.

FIG. 3. Voltage-squared vs. resistance component for var-
ious types of conductors.

the conductor can be viewed as a simple one-dimensional
case of black-body radiation. Consider a lossless one-
dimensional transmission line of length L terminated at
both ends by conductors with resistance R. The trans-
mission line has been chosen to have a characteristic
impedance Z = R; consequently any voltage wave propa-
gating along the transmission line is completely absorbed
by the terminating resistor without any reflections. Volt-
age waves of the form V = V0 exp [i(kxx− ωt)] propagate
down the transmission line at velocity v = ω/kx. The
available number of modes can be calculated by impos-
ing the periodic boundary condition V (0) = V (L) on the
propagating voltage waves. The wave vector kx is related
to the length by the relation kxL = 2πn where n is any
integer. The density of modes is then,

D(ω) =
1

L

dn

dω

=
1

L

dn

dkx

dkx
dω

=
1

2πv
(1)

The mean energy per mode is given by the Planck for-
mula,

〈ε(ω)〉 =
h̄ω

exp h̄ω
kT − 1

(2)

〈ε(ω)〉 ≈ kT (3)

where in the last line we made use of the equipartition
theorem: in the classical limit, h̄ω ¿ kT , each squared
canonical term in the the Hamiltonian contributes 1

2
kT

to the mean energy.1
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FIG. 4. Lossless transmission line Z = R of length L with
matched terminations.

The energy density per unit frequency U(ω) is then
given by the product of the density of modes and the
mean energy per mode:2

U(ω) = D(ω)〈ε(ω)〉

=
kT

2πv
(4)

The power per unit frequency is then simply:3

P (ω) = vU(ω)

=
kT

2π
(5)

OR

P (ν) = kT (6)

This is the power per unit frequency absorbed by the re-
sistor. By the principle of detailed balance this must be
equal to the power per unit frequency emitted by the re-
sistor. The thermal electromotive force generated by the
resistor sets up a current I = V/2R in the transmission
line. Thus, the power absorbed by the resistor at the
other end is

P (ν) = 〈I2(ν)〉R (7a)

=

〈
V 2(ν)

4R2

〉

R (7b)

=
〈V 2(ν)〉

4R
(7c)

Equating Eq. 6 to Eq. 7c and then solving for the
mean-square voltage per unit frequency gives:

〈V 2(ν)〉 = 4RkT (8)

By integrating the expression above over the accesible
frequency range, we arrive at the Nyquist Theorem:

〈V 2〉 = 4kTR∆ν (9)

1The Hamiltonian (per unit volume) for an electromagnetic
wave is given by H = 1

8π
(E2 +B2).

2U(ω) is a one-dimensional energy density.
3Recall that the energy density is equivalent to a force.
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B. Microscopic Derivation

Consider a conductor of resistance R with a charge car-
rier densityN having a relaxation time τc. The conductor
has length ` and cross-sectional area A. The voltage V
across the conductor is

V = IR (10a)

= RAj (10b)

= RANe〈u〉 (10c)

where I is the current, j is the current density, e is the
charge on an electron, and 〈u〉 is the drift speed along
the conductor.

Noting that NA` is the total number of electrons in
the conductor,

∑

i

ui = NA`〈u〉 (11)

Solving for 〈u〉 in Eq. 11 and substituting the resulting
expression into Eq. 10c gives,

V =
∑

i

Vi =
Re

`

∑

i

ui (12)

where ui and Vi are random variables.
The spectral density J(ν) has the property that in the

frequency interval ∆ν

〈V 2
i 〉 = J(ν)∆ν (13)

The correlation function can be written as

C(τ) = 〈Vi(t)Vi(t+ τ)〉 (14a)

= 〈V 2
i (t)〉 exp (−τ/τc) (14b)

where τ is an arbitrary time interval.
By substiting Eq. 14b and Eq. 12 into the Wiener-

Khintchine theorem Eq. 15a, the spectral density is

J(ν) = 4

∞∫

0

C(τ) cos (2πντ) dτ (15a)

= 4

(
Re

`

)2

〈u2〉

∞∫

0

exp(−τ/τc) cos (2πντ) dτ (15b)

= 4

(
Re

`

)2

〈u2〉
τc

1 + (2πντc)2
(15c)

≈ 4

(
Re

`

)2

〈u2〉τc (15d)

≈ 4

(
Re

`

)2(
kT

m

)

τc (15e)

where 〈u2〉 = kT/m by the equipartition theorem. Note
that for metals at room temperature τc < 10−13, thus
from the DC through the microwave range 2πντc ¿ 1.

Thus the mean-square voltage in the frequency range
∆ν equals:

〈V 2〉 = NA`〈V 2
i 〉 (16a)

= NA`J(ν)∆ν using Eq. 13 (16b)

= NA`4

(
Re

`

)2(
kT

m

)

τc∆ν using Eq. 15e (16c)

= 4

(
Ne2τc

m

)
A

`
R2kT∆ν (16d)

Using a result from conductivity theory σ = Ne2τc/m
and the elementary relation R = `

σA [5]:

〈V 2〉 = 4 σ
A

`
︸︷︷︸

1/R

R2kT∆ν (17)

We have once again arrived at the Nyquist Theorem:

〈V 2〉 = 4kTR∆ν (18)

The Nyquist Theorem is a special case of the general con-
nection existing between fluctuations (random variables)
and dissipation in physical systems. Brownian motion
lends itself to a similar analysis [6], [7].

III. EXPERIMENTS

This section describes the experimental apparatus
used, the calibration performed and the measurements
that were recorded.

A. Apparatus

Figure 5 is a diagram of the experimental apparatus
used to measure the Johnson Noise.4 An inverted beaker
shielded the resistor R which was mounted on the ter-
minal of the aluminum box. The resistor is connected
to the measurement chain through two switches (SW1
and SW2). A Hewlett-Packard HP54601A digital oscillo-
scope was used to measure the root-mean-square (RMS)
voltage generated by the resistor. Because the Johnson
Noise signals are in the microvolt range, a low-noise am-
plifier (PAR 113) was used to produce millivolt signals
detectable by the digital oscilloscope. A band-pass filter
(Krohn-Hite 3202R) was used to prevent thermal noise
outside the frequency range 1 KHz – 50 KHz from be-
ing amplified.5A Tektronix Function Generator (FG) 504

4Figure 5 was scanned-in from the junior lab guide [8].
5Signals outside this frequency range could not be properly
amplified by the PAR 113.
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provided sinusoidal calibration signals. The FG and the
Kay attenuator were used to calibrate the measurement
chain.

Several steps were taken to filter out extraneous noise
from the experimental apparatus. At all times the digi-
tal oscilloscope was kept at least five feet from the noise
source, otherwise the variable magnetic field from its
beam-control coil would produce undesirable electrical
oscillations in our noise measurements. Coaxial cables
were also kept as short as possible to keep minimize elec-
trical interference.

FIG. 5. Experimental apparatus.

B. Calibration of Measurement Chain

1. Test signal RMS voltage

The amplitude of the sinusoidal signal produced from
the FG was adjusted so that the RMS voltage VRMS as
measured on the digital oscilloscope was approximately 2
volts. The RMS voltage of the FG sinusoidal signal was
recorded over the range passed by the Krohn-Hite Filter
(refer to Figure 6). It was confirmed that the RMS volt-
age varied slightly over the frequency range of interest.

2. Gain of measurement chain

The sinusoidal test signal was fed through the Kay at-
tenuator set to 60 dB (1000) of attenuation to the ‘A’
input of the PAR amplifier (set to 1K) with ‘B’ input
grounded. The RMS voltages out of the Krohn-Hite fil-
ter were measured over a 100 kHz frequency range. The
gain squared [g(ν)]2 was small at very low frequency, then
drastically increased to unity around 5 kHz (refer to Fig-
ure 7). As expected at higher frequency (> 50 kHz) the
gain squared roll off considerably.
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FIG. 6. RMS voltage VRMS produced by function generator
as a function of frequency.

C. Resistance Dependence of Johnson Noise

With the PAR amplifier set to 1K, typical RMS volt-
ages out of the Krohn-Hite filter were in the millivolt
range. The component of the noise VS not generated by
the resistor but by the amplifier itself was measured by:

1. Opening SW2.

2. Unplugging the connections to the ohmmeter and
temperature meter.

3. Shorting the resistor with SW1.

The total RMS voltage VR was measured with the short-
ing switch SW1 open. Because all the contributions to
the measure RMS voltage are statistically uncorrelated,
they add in quadrature. Thus, mean square Johnson noise
of the resistor is given by,

V ′2
Jo = V 2

R − V 2
S (19)

where VR and VS are the RMS voltages measured with
the SW1 open and closed, respectively. The resistance R
was measured using a digital multimeter after each noise
measurement.

D. Temperature Dependence of Johnson Noise

The Johnson noise of a 22.2 kΩ resistor was measured
at liquid N2 temperature −160◦C to 150◦C. High temper-
atures were obtained by mounting the inverted aluminum
box and placing it on a cylindrical oven. The tempera-
ture was adjusted by using a Variac. Low temperatures
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FIG. 7. Gain squared of measurement chain in the fre-
quency range (0.5 KHz – 100 kHz.) NOTE: The dotted line
is not a fitted function. Its purpose is tom emphasize a trend
in the gain squared. The gain squared has been normalized
such that the value of [g(ν)]2 = 1 corresponds to a gain of
1000.

were obtained by inverting the aluminum box and plac-
ing it on a liquid N2 filled dewar flask. The temperature
was varied in an ad-hoc manner by raising and lowering
the aluminum box into the dewar flask as needed.

IV. RESULTS AND DISCUSSION

The first subsection explicitly connects the Nyquist
Theorem with the experimental setup at hand. The last
two subsections describe the results of the subsections
III C & IIID, respectively.6

A. Derivation of RMS thermal voltage at the

terminal of an RC circuit

The resistor and coaxial cables that are connected to
the PAR amplifier can be modeled as the circuit depicted
in Figure 8. The equivalent circuit is composed of a fluc-
tuating thermal electromotive force VJo with an ideal re-

6Note that Boltzmann constant is calculated in the last two

subsections.

sistor R and a capacitor C in a simple lowpass filter con-
figuration.

C

R

V’Jo

VJo

FIG. 8. Equivalent circuit of the electromotive force across
a conductor of resistance R connected to the measuring device
with cables having capacitance C.

In sinusoidal steady state, impedances can be used to
treat the circuit as a voltage divider.

V ′

Jo =
(iωC)−1

(iωC)−1 +R
g(ω)VJo (20a)

=
1

1 + iωC
g(ω)VJo (20b)

The RMS thermal voltage is the magnitude of Eq. 20b:

V ′2
Jo =

[g(ν)]2V 2
Jo

1 + (2πνRC)2
(21)

The Johnson Noise is equation Eq. 21 summed over the
accessible frequencies,

V ′2
Jo = V 2

Jo

∞∫

0

[g(ν)]2

1 + (2πνRC)2

︸ ︷︷ ︸

G

dν (22)

In this experiment, the integral in Eq. 22 was numerical
evaluated using the data collected in the calibration of
the measurement chain (Figure 7). The capacitance C
was approximated at 60 pF from considerations of the
amount of coaxial cable used and its known capacitance
per unit length, 30.8 pF/feet. The Nyquist Theorem ex-
pressed in terms of the present variables is arrived at
by taking Eq. 9(or 18) and making the substitutions:
〈V 2〉 → V ′2

Jo and ∆ν → G.

V ′2
Jo = 4kTRG (23)

B. Determination of the Boltzmann Constant

The RMS voltage was measured for eight metal film
resistors (whose values ranged from 20 kΩ to 103 kΩ) at
room temperature. Figure 9 is a plot of V ′2

Jo against R.
The Boltzmann constant was calculated by solving for k
in Eq. 23. The experimentally determined value of the
Boltzmann constant, 1.37± 0.06× 10−23 J/K, is in good
agreement with the accepted value 1.38× 10−23 J/K.
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FIG. 9. Resistance dependence of Johnson Noise V ′
Jo.

C. Determination of the Absolute Zero on

Centigrade Scale

The RMS voltage for 22.2 kΩ resistor was measured
at fourteen temperatures ranging from ∼ −160◦C to
∼ 150◦C at approximate intervals of 25◦C Figure 10 is a
least-squares fit of V ′2

Jo/4RG vs. T . The slope of the line
gives the Boltzmann constant and the T -intercept is the
centigrade temperature of absolute zero. The Boltzmann
constant was determined to be 1.363±0.025×10−23 J/K
and centigrade temperature of absolute zero was extrapo-
lated to −265.5±6.9◦C. Both experimentally determined
values are in good agreement with their accepted values
of 1.38× 10−23 J/K and −273.15K, respectively.
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FIG. 10. Temperature dependence of Johnson Noise V ′
Jo.

V. CONCLUSIONS

Johnson Noise belongs to a broader category of
stochastic phenomena which have been of research in-
terest for decades. Measurement of the thermal noise
in resistors provided a means to calculate the Boltzmann
constant and the centigrade temperature of absolute zero.
Because there are inherent difficulties in measuring ther-
mal noise, the Boltzmann constant was measured to an
accuracy of ∼ 4 %.7 Alternate methods of implementing
a undergraduate physics experiment on Johnson Noise
are described in the literature (e.g. [9]).
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